
Notes on noise

Gaussian phase noise

If decoherence is driven by a weak coupling of the system S to each of many “fluctuators”
in the bath B, then it is reasonable to suppose that the fluctuations of B obey Gaussian
statistics. Furthermore, in many systems “dephasing” is much stronger than “relaxation.”
For example, consider a qubit such that the basis states |0〉 and |1〉, are eigenstates of the
unperturbed system HamiltonianHS , with energy splitting h̄ω01. Low-frequency fluctuations
(ω � ω01) can cause a superposition to decohere in the {|0〉, |1〉} basis, without driving
transitions between |0〉 and |1〉.

To model a Gaussian dephasing process, consider the Hamiltonian

H = −1

2
ω01σz −

1

2
f(t)σz , (1)

where f(t) is a fluctuating “magnetic field” that will be described stochastically (we assume
h̄ = 1). For now, then, the “bath” is being treated as a fluctuating classical variable — later
we will allow the bath to be a fluctuating quantum reservoir coupled to the system S. In
this model, the system Hamiltonian HS = 1

2
ω01σz commutes with the system-bath coupling

HSB = 1
2
f(t)σz, and in fact we can transform HS away by going to the interaction picture.

We denote averaging over the ensemble of functions {f} as [·]f , and f is assumed to
be a stationary (i.e., time-translation invariant) Gaussian random variable with mean zero,
[f(t)]f = 0, and covariance K(t − t′) ≡ [f(t)f(t′)]f . Correlation functions for f(t) are
generated by

Z[J ] ≡
[
e
∫

dtJ(t)f(t)
]
f

= exp
(

1

2

∫
dtdt′J(t)K(t− t′)J(t′)

)
. (2)

An initial density operator ρ(0) evolves in time T to

ρ(T ) =

[
exp

(
i
∫ T

o

1

2
f(t)σz

)
ρ(0) exp

(
−i
∫ T

o

1

2
f(t)σz

)]

f

. (3)

This has no effect on |0〉〈0| or |1〉〈1|, but causes the coefficient of the off-diagonal entries
|0〉〈1| and |1〉〈0| to decay by the factor

exp

(
−1

2

∫ T

0
dt
∫ T

0
dt′K(t− t′)

)
= exp

(
−1

2

∫ T

0
dt
∫ T

0
dt′
∫ ∞

−∞

dω

2π
e−iω(t−t′)K̃(ω)

)
, (4)

where we have introduced the Fourier transform K̃(ω) of the covariance K(t), which is said
to be the “spectral density” or “power spectrum” of the noise. Doing the t and t′ integrals
we obtain

exp

(
−1

2

∫ ∞

−∞

dω

2π
K̃(ω)WT (ω)

)
(5)

where the smooth window function WT (ω) is

WT (ω) =

∣∣∣∣∣

∫ T

0
dt e−iωt

∣∣∣∣∣

2

=
4

ω2
sin2(ωT/2) , (6)
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which has most of its support on the interval [0, 2π/T ].
Assuming that K̃(ω = 0) is finite, we expect that for T sufficiently large, K̃(ω) can

be regarded as approximately constant in the region where WT (ω) is supported. Using∫∞
−∞ dx sin2 x

x2 = π, we then obtain e−Γ2T , where the dephasing rate Γ2 is

Γ2 = K̃(ω = 0) . (7)

(Here we’ve assumed that K̃(ω) is continuous at ω = 0 — otherwise we should average
its limiting values as ω approaches zero from positive and negative values.) If the spectral
density is flat (“white noise”), this formula for Γ2 applies at any time T , but in general, the
time scale for which dephasing can be described by a rate Γ2 depends on the shape of the
noise’s spectral density.

Crudely speaking, we expect K̃(ω) to be roughly constant in the interval [0, ωc], where
ωc = 2π/τc, and τc is a characteristic “autocorrelation” or “memory” time of the noise.
That is, τc is chosen so that the correlation function K(t − t′) is small for |t − t′| � τc.
Thus we see that in order to speak of a “dephasing rate” Γ2 (and a corresponding dephasing
time T2 = Γ−1

2 ) we must consider evolution that has been “coarse-grained” in time. For the
purpose of describing evolution over a time period T � τc, the non-Markovian noise model
can be replaced by a corresponding effective Markovian model in which the memory of the
fluctuations can be neglected. But for T � τc such a description is not applicable.

Qubits as noise spectrometers

We see that an experimentalist, by measuring the dephasing time T2 of a qubit, can probe
the low-frequency noise power. In fact, noise power as a function of frequency is measurable,
if the experimenter can vary the energy difference ω01 between the two computational basis
states of the qubit, and observe how the polarization and relaxation time T1 of the qubit
depend on ω01.

We will give a more careful account below of interaction-picture perturbation theory for
a qubit coupled to a quantized bath, but for now, in the spirit of the above discussion of
dephasing, consider relaxation driven by a fluctuating magnetic field in the x̂ direction, as
described by the Hamiltonian

H = −1

2
ω01σz + f(t)σx . (8)

If the fluctuating field f(t) is weak, we may compute the probability for the qubit to make
a transition from the excited state |1〉 to the ground state |0〉 during the time interval [0, T ],
using the lowest nontrivial order of perturbation theory; after averaging over the fluctuating
field we find

Prob(1 → 0) =



∣∣∣∣∣−i

∫ T

0
dt f(t)e−iω01〈0|σx|1〉

∣∣∣∣∣
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f

=
∫ T

0
dt
∫ T

0
dt′ e−iω01(t−t′) [f(t)f(t′)]f

=
∫ ∞

−∞

dω

2π
K̃(ω)WT (ω − ω01) . (9)
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This is similar to our expression for the dephasing probability, except that now the center
of the window function has been shifted to the frequency ω01 of the transition.

Once again, if we consider the observation time T to be large compared to the autocor-
relation time τc of the bath, then the support of the window function is narrow, and K̃(ω)
is approximately constant in the window. Thus, after a suitable coarse-graining of the time
evolution, we may identify a rate for the decay of the qubit

Γ↓ = K̃(ω = ω01) . (10)

Similarly, for the transition from ground state to excited state, we find

Γ↑ = K̃(ω = −ω01) . (11)

Thus negative frequency noise transfers energy from the noise reservoir to the qubit, exciting
the qubit, while positive frequency noise transfers energy from qubit to the noise reservoir,
returning the excited qubit to the ground state. Dephasing of a qubit, on the other hand,
involves a negligible exchange of energy and therefore is controlled by low frequency noise.

Actually, for the case we have considered in which the noise source is classical, f(t) and
f(t′) are real commuting variables; thereforeK(t) is an even function of t and correspondingly
K̃(ω) is an even function of ω. Classical noise is spectrally symmetric, and the rates for
excitation and decay are equal.

On the other hand, noise driven by a quantized thermal bath is spectrally asymmetric.
When the qubit comes to thermal equilibrium with the bath, up and down transitions occur
at equal rates. If p0 denotes the probability that the qubit is in the ground state |0〉 and p1

denotes the probability that the qubit is in the excited state |1〉, then in equilibrium

p0Γ↑ = p1Γ↓ ⇒
K̃(−ω01)

K̃(ω01)
=
p1

p0
= e−βω ; (12)

the ratio of noise strengths at positive and negative frequencies is given (for a thermal bath)
by a Boltzmann factor, which is known as the Kubo-Martin-Schwinger (KMS) condition.
The noise becomes classical in the high-temperature limit βω → 0, and is in the deeply
quantum regime for βω � 1. In optical transitions such quantum noise has been routinely
studied for decades, but it is only relatively recently that electrical circuits have entered the
quantum regime (e.g., for a 1 GHz resonator, the temperature is required to be below 20
mK).

For an “artificial atom” such as an electron spin in a quantum dot or the charge in a
Cooper-pair box, the energy splitting ω01 can be tuned by the experimentalist. Then the
equilibrium polarization of the qubit, observed as a function of ω01, determines the ratio
K̃(−ω)/K̃(ω) (and hence the effective noise temperature of the bath). Furthermore, the
sum K̃(ω)+ K̃(−ω) can be determined by observing how rapidly the polarization relaxes to
its equilibrium value. The probability that the state |0〉 is occupied evolves according to

dp0/dt = Γ↓p1 − Γ↑p0 ; (13)

If ∆p0 is the deviation of p0 from its equilibrium value (and therefore −∆p0 is the deviation
of p1 from its equilibrium value), then

d∆p0/dt = −Γ1∆p0 , (14)

3



where
Γ1 = Γ↓ + Γ↑ = K̃(ω) + K̃(−ω) . (15)

The time T1 = Γ−1
1 is the “relaxation time” of the qubit. Measuring the equilibrium polar-

ization and the relaxation time determines both K̃(ω) and K̃(−ω).

White noise, random walk noise, and 1/f noise

If the spectral density is flat, then the covariance of the noise is a delta function in time:

[f(t)f(t′)]f ≡ K(t− t′) = κδ(t− t′) . (16)

Thus we can generate a sample of white noise by drawing a value of f(t) from a mean-zero
Gaussian ensemble independently in each time bin (there are no correlations between f(t)
and f(t′) for t 6= t′). Though f(t) has a well-defined mean (namely zero) if we average over
a long time period, its instantaneous value is ill-defined (it is discontinuous at every point).
Strictly speaking white noise is unphysical because there is an infinite amount of spectral
power at high frequency. Nevertheless, white noise often provides a good description of
physical noise sources; we just need to remember that some kind of high-frequency cut off
is always required. For example, thermal Johnson noise in electrical circuits is white noise,
at frequencies such that h̄ω � kT so that each thermally populated mode in a wire carries
energy kT . And as we have already discussed, noise can be well approximated by white
noise if we coarse-grain in time by observing dynamics for a time large compared to the
autocorrelation time of the noise.

A random walk (RW) is a noise process whose derivative is white noise (WN) — each
step in the walk is independent of previous and subsequent steps. Since differentiating f(t)
is equivalent to dividing its Fourier transform f̃(ω) by ω, we have fRW(ω) = ω−1fWN(ω)
and K̃RW(ω) = ω−2K̃WN(ω) ∝ 1/ω2; random walk noise has spectral density proportional
to 1/ω2. In this case, the integrated power spectrum diverges at low frequency, and cor-
respondingly a random walk has no well-defined mean even if we average over a long time
period — the walk wanders arbitrarily far away from the origin.

Intermediate between white noise and random walk noise is “1/f noise” or “flicker noise”
— what we might describe as the “half integral” of white noise in the sense that f̃ =
ω−1/2f̃(ω), which means that the power spectrum is K̃(ω) ∝ 1/ω. The integrated spectral
power of 1/f noise diverges at both low and high frequency, but only logarithmically, much
milder than the ultraviolet divergence of white noise or the infrared divergence of random
walk noise. The characteristic feature of 1/f noise is scale invariance. It has the same
features on all time scales; i.e., the integrated spectral power is the same in each decade of
frequency.

Such scale invariant 1/f noise seems to arise naturally in many settings (it applies accu-
rately to the stock market, earthquakes, and classical music for example), and it is not so
clear why this should be so. Scale invariance is a characteristic property of various phase
transitions driven by thermal or quantum fluctuations, but in these cases it is usually nec-
essary to tune one or more parameters to reach the scaling regime. In contrast, 1/f noise
can arise generically, without tuning of parameters (which is sometimes referred to as “self-
organized criticality”).
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In particular, 1/f noise often occurs in electrical circuits, including the superconducting
circuits that are of interest for potentially scalable quantum computing, and can be the
dominant source of noise at low frequency. If the phase noise spectrum behaves like K̃(ω) ∝
1/ω at low frequency, then the dephasing cannot be characterized by a rate Γ even at large
times (as one might expect given that the noise has no well defined mean). Rather, phase
noise with a frequency comparable to the inverse running time of an experiment can generate
a variability in the energy splitting ω01 from one run to the next.

The tendency of noise power to grow at low frequency means that in many settings the
dephasing rate is expected to be much larger than the relaxation rate. In fact, the physical
process responsible for dephasing may have so little power at frequency ω01 that a completely
different process dominates relaxation. For example, in an ion trap dephasing may arise from
voltage fluctuations in the trapping electrodes while relaxation is due to spontaneous photon
emission. For electron spins in quantum dots dephasing arises from interactions with a bath
of many nuclear spins, while relaxation is due to spontaneous phonon emission. (To exchange
energy ω01 with the bath, many nuclear spins must flip, a highly suppressed process.)

Spin echo

One way to tame the damaging effects of low frequency noise is to invoke the spin echo trick.
For example, when observing the dephasing of a spin evolving for time T , we may apply a
fast pulse that flips the spin about the x-axis at time T/2. Then the effects of low-frequency
phase noise during the second half of the evolution will tend to compensate for the effects of
the phase noise during the first half.

If we use this trick, the damping factor applied to |0〉〈1| is again given by

exp

(
−1

2

∫ ∞

−∞

dw

2π
K̃(ω)WT (ω)

)
(17)

but with a modified window function

WT (ω) =

∣∣∣∣∣

∫ T

0
dtJ(t)eiωt

∣∣∣∣∣

2

, (18)

where J(t) is a modulating function that expresses the effect of the spin echo pulse sequence.
For example, if we flip the spin at time T/2, then J(t) is +1 in the interval [0, T/2] and -1
in the interval [T/2, T ], and therefore

WT (w) =
1

ω2

∣∣∣1 − 2eiωT/2 + eiωT
∣∣∣
2

=
1

ω2

∣∣∣∣∣
1 − eiωT/2

1 + eiωT/2
(1 + eiωT/2)(1 − eiωT/2)

∣∣∣∣∣

2

= tan2(ωT/4) · 4

ω2
sin2(ωt/2) . (19)

In effect, the spin echo modifies K̃(ω) by the multiplicative factor tan2(ωT/4), which sup-
presses the low frequency noise.

If the spin echo sequence consists of 2N − 1 equally spaced spin flips, then the window
function becomes

W =
∣∣∣1 − 2x+ 2x2 − 2x3 + · · · − 2x2N−1 + x2N

∣∣∣
2
, (20)
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where x = eiωT/2N, or

WT (ω) =
∣∣∣∣
1 − x

1 + x
(1 − x2N)

∣∣∣∣
2

= tan2(ωT/4N) · 4

ω2
sin2(ωt/2) . (21)

The peak of the frequency window gets shifted to the vicinity of ω = 2πN/T .
Here we have described how spin echos can protect a stored qubit from low frequency

noise. If we wish to perform a quantum gate with a nontrivial action on the qubit, it is
possible to design a composite pulse sequence that realizes the gate while also suppressing
the low frequency noise. Such procedures tend to flatten the noise power spectrum, and
therefore make the noise more nearly symmetric (by reducing the disparity between the
dephasing rate and the relaxation rate).

Spin-boson model

The spin-boson model is a more refined model of phase noise, in which the stochastic classical
field f(t) is replaced by a quantized bath of harmonic oscillators. Actually, the spin-boson
model is said (e.g., by Leggett) to provide a reasonable description of the decoherence of an
oscillating system rather generally, at least for the case where the system is weakly coupled
to each of many degrees of freedom in the environment.

In this model, the Hamiltonian for the bath and for the coupling of the bath to the system
is

HB +HSB =
∑

k

ωka
†
kak −

1

2
σz

(∑

k

gkak + g∗ka
†
k

)
(22)

There are many oscillators, so that the sum over k can be approximated by a frequency
integral: ∑

k

|gk|2 ≈
∫ ∞

0
dωJ(ω) , (23)

where J(ω) is the spectral function of the oscillator bath. If the Hamiltonian HS of the
system commutes with HSB (for example if HS = 1

2
ω01σz), then we can solve the model in

closed form. For more general HS , a formal solution can be written down, but the model
is tractable only if appropriate approximations are made (for example, the “non-interacting
blip approximation — NIBA — introduced by Leggett et al. for the study of macroscopic
quantum coherence).

Let us assume that the bath is in thermal equilibrium at temperature β−1. In principle,
the coupling to the system could tweak the equilibrium distribution of the bath, but we
assume that this effect is negligible, because the bath is much bigger than the system. Thus
the fluctuations of the bath are Gaussian, and the average over the ensemble of classical
functions in our previous analysis can be replaced by the thermal expectation value:

[f(t)f(0)]f 7→ 〈f(t)f(0)〉β ≡ tr
(
e−βHf(t)f(0)

)
, (24)

where now f(t) denotes the operator

f(t) = eitHBf(0)e−itHB =
∑

k

(
gkake

−iωkt + g∗ka
†
ke

iωkt
)
. (25)
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We see that
Kβ(t) ≡ 〈f(t)f(0)〉β =

∑

k

|gk|2 〈e−iωktaka
†
k + eiωkta†kak〉β . (26)

From the Planck distribution,

〈a†kak〉β =
1

eβω − 1
=

1

2
coth(βωk/2) −

1

2

〈aka
†
k〉β = 〈a†kak + 1〉β =

1

2
coth(βωk/2) +

1

2
. (27)

Fourier transforming, we find the spectral density of the noise

K̃β(ω) ≡
∫ ∞

−∞
dt eiωtKβ(t) =

∑

k

|gk|2
(
2πδ(ω − ωk)〈aka

†
k〉β + 2πδ(ω + ωk)〈a†kak〉β

)
(28)

that is,

K̃β(ω) = πJ(ω) (coth(βω/2) + 1) , ω > 0 ,

K̃β(ω) = πJ(ω) (coth(βω/2) − 1) , ω < 0 . (29)

Thus the spectral density K̃β(ω) of the noise at positive frequency ω is enhanced relative
to the spectral density K̃β(−ω) at negative frequency by the Boltzmann factor eβω (the
“KMS condition”). This spectral asymmetry ensures that the rate for spontaneous decay
of the system is enhanced relative to the thermal excitation rate by the Boltzmann factor,
enforcing detailed balance of the decay and excitation rates in thermal equilibrium. (See
eq.(70) and (71) below.)

Since the window function WT (ω) is an even function of ω, only the even part of K̃β(ω)
contributes to the attenuation of |0〉〈1|; the attenuation factor is

exp

(
−1

2

∫ ∞

−∞

dω

2π
K̃β(ω)WT (ω)

)
, (30)

which therefore becomes

exp

(
−
∫ ∞

0
dωJ(ω)

2 sin2(ωT/2)

ω2
coth(βω/2)

)
. (31)

A dephasing rate can be identified if the spectral function J(ω) behaves suitably at low
frequency; the attenuation factor is e−Γ2T in the limit T → ∞ where

Γ2 = lim
ω→0

K̃β(ω) = lim
ω→0

2πJ(ω)/(βω) , (32)

assuming that this limit exists. That is, there is a dephasing rate Γ2 = 2πAβ−1 (for T � β)
provided that J(ω) ≈ Aω at low frequency, the “Ohmic” case.

At strictly zero temperature, we have coth(βω/2) = 1. Then in the extreme “sub-
Ohmic” case where J(ω) ≈ A (a nonzero constant at low frequency), the dephasing rate is
Γ2 = A

∫∞
0 (sin2 x)/x2 = π

2
A. In the Ohmic case J(ω) ≈ Aω, rather than a dephasing rate we

find that our expression for the attenuation factor diverges logarithmically in the ultraviolet;
it is exp (−A log(ωcT )), where ωc denotes a high-frequency cutoff. Thus the off-diagonal
terms in the density operator decay like a power of 1/T , rather than exponentially in T .
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Multi-qubit decoherence

Now we generalize the spin-boson model to describe n qubits interacting collectively with a
common oscillator bath:

HSB = −
∑

l

1

2
σl

z

(∑

k

gl
kak + gl∗

k a
†
k

)
. (33)

The coupling parameter gl
k quantifies the strength of the interaction of the kth oscillator

with the lth spin. In this version of the model, since a single oscillator may couple to many
spins, the fluctuations of that one oscillator can contribute to the decoherence of many spins.
Thus the model incorporates a mechanism for collective decoherence.

Again, since we assume that the action of each oscillator on each spin is diagonal in the
z basis, the spins will decohere in this basis. Let |η〉 = |ηn−1ηn−2 . . . η1η0〉 denote an n-qubit
state expressed in this basis. Then in time T , the density matrix element |η〉〈µ| evolves to

〈
e−i

∫ T

0
HSB |η〉〈µ|ei

∫ T

0
HSB

〉

β
= |η〉〈µ|

〈
exp

(
i
∑

l

(ηl − µl)
∫ T

0
dtf l(t)

)〉

β

= |η〉〈µ| exp


−1

2

∑

l,m

(ηl − µl) (ηm − µm)
∫ T

0
dt
∫ T

0
dt′
〈
f l(t)fm(t′)

〉
β


 , (34)

where
f l(t) =

∑

k

(
gl

kake
−iωkt + gl∗

k a
†
ke

iωkt
)
, (35)

and therefore

K̃ lm
β (t− t′) ≡

〈
f l(t)fm(t′)

〉
β

=
∑

k

gl
kg

m∗
k e−iωk(t−t′)〈aka

†
k〉β + gl∗

k g
m
k e

iωk(t−t′)〈a†kak〉β . (36)

Thus the factor by which |η〉〈µ| is attenuated is

exp


−

∑

l,m

Clm(ηl − µl)(ηm − µm)


 , (37)

where

Clm =
1

2

∫ ∞

−∞

dω

2π
K̃ lm

β (ω)WT (ω) , (38)

and

K̃ lm
β (ω) = π

∑

k

(δ(ω−ωk)g
l
kg

m∗
k (coth(βωk/2)+1)+δ(ω+ωk )gl∗

k g
m
k (coth(βωk/2)−1)) . (39)

A natural assumption is that k labels the momentum of a mode of a quantized field, e.g.
that the qubits are immersed in a bath of thermal photons or phonons, so that gl

k = gke
ik·rl,

or

HSB =
∑

l

1

2
σl

z

(∑

k

gkake
ik·rl + g∗ka

†
ke

−ik·rl

)
; (40)
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then

K̃ lm
β (ω) = π

∑

k

|gk|2
(
δ(ω − ωk)e

ik·(rl−rm)(coth(βωk/2) + 1)

+δ(ω + ωk)e
−ik·(rl−rm)(coth(βωk/2) − 1)

)
. (41)

To go further, we need to know more about how k is related to ωk. So let us assume the
linear dispersion relation ωk = |k|, and an isotropic three-dimensional density of states. We
can express K̃β(ω) in terms of the bath spectral function J(ω) by averaging over the values
of k that correspond to a fixed value of ωk:

1

2

∫ 1

−1
d cos θeiωr cos θ =

sinωr

ωr
, (42)

thus obtaining

Clm =
1

2

∫ ∞

−∞

dω

2π
K̃ lm

β (ω)WT (ω) =
∫ ∞

0
dωJ(ω)

2 sin2(ωT/2)

ω2
coth(βω/2)

sin ω|rl − rm|
ω|rl − rm| . (43)

This formula agrees with eq.(2) in Klesse and Frank (quant-ph/0505153), except that their
Hamiltonian differs from mine by a factor of 2, so their formula seems to be missing a factor
of 4. (Note that I am using T here to denote time, and β−1 to denote temperature.)

For modes with wavelength small compared to the separation between qubits, the oscilla-
tions of sinωr suppress the off-diagonal terms in the matrix Clm, and the attenuation factor
becomes

exp

(
−
∑

l

Cll(ηl − µl)
2

)
=
∏

l

e−C(ηl⊕µl) ; (44)

the n qubits all decohere independently in the manner described by the single-qubit spin-
boson model. But the thermal fluctuations of the long-wavelength modes induce collective
decoherence. In the extreme case |k|r � 1 for all pairs of qubits, Clm is independent of r,
and we have instead

exp

(
−C

∑

l

(ηl − µl)
∑

m

(ηm − µm)

)
= exp

(
−C(|η| − |µ|)2

)
, (45)

where |η| denotes the Hamming weight of the binary string η. Thus in the case of extreme
collective interference, the attenuation of |η〉〈µ| is determined by the difference in the total
σz of the states |η〉 and |µ〉, since the low-frequency oscillators couple to the total spin. In
contrast, the high-frequency oscillators “look at” the spins one at a time and the strength of
the attenuation is determined by the number of spins for which there is a mismatch between
ηl and µl. In both cases the constant C is given by the |rl − rm| → 0 limit of eq.(43).

In effect, then, the high-frequency component of the bath behaves like independent baths
interacting with each qubit. In that case, for fixed time T and at sufficiently weak coupling,
the probability that t qubits are afflicted by Z errors arising from the fluctuations of the
bath is

Pt = pt(1 − p)n−t , p =
1

2

(
1 − e−C

)
. (46)
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But as Klesse and Frank correctly point out, in the limit of collective decoherence, and even
for p � 1, Z errors can act on a fixed fraction much larger than p of the n qubits, with
a nonzero probability independent of n in the limit n → ∞. The fluctuations of the low
frequency modes apply correlated kicks to all n qubits. Though these kicks are typically
small when the coupling is weak, rare large fluctuations can damage many qubits at once.

However, Klesse and Frank consider an unreasonable limit, in which the maximal spatial
separation of a pair of qubits is held fixed as the number of qubits n increases. We should
consider how Clm behaves when the separation |rl − rm| is large compared to other natural
scales. In this case we may presume that the integral over the spectrum of the bath will be
dominated by small values of ω such that βω � 1 and ωT � 1. Then we can approximate
eq.(43) by

C(r) ≈
∫ ∞

0
dωJ(ω) · 1

2
T 2 · 2

βω
· sinωr

ωr
, (47)

and in the Ohmic case J(ω) ≈ Aω we find

C(r) ≈ Aβ−1T 2
∫ ∞

0
dω

sin ωr

ωr
= Aβ−1r−1T 2

∫ ∞

0
dx

sinx

x
=
πAβ−1

2r
T 2 . (48)

If the distance r scales like a power of n, then the collective decoherence should be weak
enough for quantum error correction to work effectively; still it would be useful to study this
issue in more detail. How well does the spin-boson model assumed by Klesse and Frank,
in which the long-wavelength modes of the bath coupled collectively to many qubits, apply
to realistic devices? Also note that the effects of low-frequency fluctuations can be further
suppressed through the use of spin-echo pulse sequences, and that collective noise can be
suppressed by encoding logical qubits in “decoherence-free subspaces.”

Indeed, the model of collective decoherence discussed by Klesse and Frank can be equiv-
alently described as a time-fluctuating but spatially uniform classical magnetic field that
couples to the ẑ component of the total spin of the qubits. If we encode logical qubits in
two-qubit blocks according to

|0̄〉 = |01〉 , |1̄〉 = |10〉 , (49)

then all codewords have the same total σz (namely 0), so that the magnetic field has no effect
at all. Nevertheless, it is sometimes useful to keep the Klesse-Frank model in mind, as it
cautions us that we cannot expect to prove that fault-tolerant quantum computing succeeds
without appropriate assumptions about the oscillator bath and/or about the encoding used.

Interaction picture

When HS does not commute with HSB (including the case where the system Hamiltonian is
time dependent), we can describe the joint evolution of the system and bath perturbatively,
using the interaction picture. To find the time evolution operator U(T, 0) determined by the
Hamiltonian

H = HS +HB +HSB , (50)
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we divide the time interval [0, T ] into many infinitesimal intervals, each of width ∆, for which
the evolution operator is

U(t+ ∆, t) = e−i∆H = e−i∆HS(t)e−i∆HB(t) (I − i∆HSB(t)) (51)

The mth order term in perturbation theory in HSB can be expressed as

(−i)m
∑

t1,t2,...,tm

U0(T, tm)HSB(tm)U0(tm, tm−1)HSB(tm−1) . . .HSB(t1)U0(t1, 0) , (52)

where U0 is the time evolution operator for Hamiltonian HS +HB, and tm > tm−1 > · · · >
t2 > t1. That is, the perturbation HSB couples the system to the bath at m distinct times,
and in between these events, the system and bath evolve independently.

If we define the interaction picture by AI(t) = U0(0, t)A(t)U0(t, 0), we can express the
joint evolution operator as

U(T, 0) = U0(T, 0) ·



∞∑

m=0

(−i)m
∑

t1,t2,...,tm

HI,SB(tm)HI,SB(tm−1) . . .HI,SB(t1)




= U0(T, 0) · T exp

(
−i
∫ T

0
dtHI,SB(t)

)
, (53)

or in other words,

UI (T, 0) ≡ U0(0, T )U(T, 0) = T exp

(
−i
∫ T

0
dtHI,SB(t)

)
, (54)

where T exp denotes the time-ordered exponential.
Without loss of generality, we may express the system-bath coupling as HSB = Ai ⊗ Bi

(with the understanding that the repeated index i is summed), where Ai acts on the system
and Bi acts on the bath (we may also assume that each Ai and each Bi is Hermitian).
Suppose that, as in our discussion of the spin-boson model, the correlations of the bath
operators {Bi} are Gaussian — as would be the case for example if the state ρB of the
bath were a thermal state of noninteracting harmonic oscillators. The two-point correlation
functions (“propagators”) in the bath may be denoted

〈Bi(t2)Bj(t1)〉 = trB (Bi(t2)Bj(t1)ρB)

= trB (UB(T, t2)BiUB(t2, t1)BjUB(t1, 0)ρBUB(0, T )) = Kij(t2 − t1) ; (55)

the interaction picture system density operator ρI,S ≡ US(0, t)ρS(t)US(t, 0) evolves according
to

ρI,S(T ) =
∞∑

m,n=0

(−i)m(i)n

n! m!

∫ T

0
dt1dt2 . . . dtm

∫ T

0
ds1ds2 . . . dsn

T
(
Aim(tm) . . .Ai2(t2)Ai1(t1)

)
ρS(0)T̄

(
Aj1(s1)Aj2(s2) . . . Ajn(sn)

)

〈
Bj1(s1)Bj2(s2) . . .Bjn(sn)Bim(tm) . . . Bi2(t2)Bi1(t1)

〉
. (56)
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(Here T̄ denotes anti-time ordering, and Ai(t) = US(0, t)AiUS(t, 0).) Note that we use the
unperturbed system dynamics to define the interaction picture for system operators, and the
unperturbed bath dynamics to define the interaction picture for the bath operators. In prin-
ciple these operators could have intrinsic time dependence, aside from the time dependence
arising from transforming to the interaction picture; the bath correlators will be assumed to
be Gaussian, but need not be stationary.) The (Gaussian) expectation value of the string
of bath operators can be expressed as a sum over all possible “contractions” of pairs of
operators. Thus we obtain a sum of diagrams, where in each diagram the points where the
perturbations act on the system are connected pairwise by bath propagators. Note that
there are three types of contractions – we can contract two t’s, two s’s, or an s and a t.

This expansion gives the evolution exactly, at least under the assumption that the cor-
relations of the bath are Gaussian. By making a further approximation, we can obtain a
fairly simple integro-differential equation for ρI,S(T ). This approximation, called the “Born”
approximation, is justified if the coupling of the system to the bath is sufficiently weak and
the correlation time of the bath is sufficiently short. In diagrammatic terms, the approxi-
mation is to include in the sum only the diagrams for which no two contractions “cross one
another.” That is, if a vertex at time t1 is contracted with a vertex at time t2 > t1, then
there are no vertices in the time interval [t1, t2] that are also contracted with other vertices.
And similarly, if s is contracted with t > s, then there are no vertices in the time interval
[s, t] that are contracted with other vertices. Physically, in the Born approximation we are
assuming that the system evolves slowly compared to the correlation time of the bath.

Now if we once differentiate the expression for ρI,S(T ) in eq.(56) with respect to T , and we
assume that only the diagrams that are allowed under the Born approximation are included,
we obtain terms with one of the system operators acting at time T from the left or from
the right. The corresponding bath operator at time T is contracted with a bath operator
at an earlier time. Apart from the bath propagator, what remains is the diagram sum that
generates ρI,S at the earlier time. That is, we obtain the integro-differential equation:

ρ̇I,S(T ) =
∫ T

0
dt
(〈
Bj(t)Bi(T )

〉
Ai(T )ρI,S(t)Aj(t) +

〈
Bj(T )Bi(t)

〉
Ai(t)ρI,S(t)Aj(T )

−
〈
Bj(T )Bi(t)

〉
Aj(T )Ai(t)ρI,S(t)−

〈
Bj(t)Bi(T )

〉
ρI,S(t)Aj(t)Ai(T )

)
. (57)

Note that we can easily check that tr [ρ̇I,S(T )] = 0 and that ρ̇I,S is Hermitian, as is required
for the normalization and Hermiticity of the density operator to be preserved. In the Born
approximation (or “first Born approximation”) we retain on the right-hand side of eq.(57) the
leading (quadratic) term in an expansion in powers ofA. In the “second Born approximation”
we would expand the right-hand side to quartic order in A, and so on. Thus the Born
approximation is the first term in a systematic weak-coupling expansion; however I emphasize
again that the bath correlation function must be short enough for the Born approximation
to be well justified — only then does it make sense to include the diagrams without crossings
that arise when eq.(57) is integrated, while excluding diagrams with crossings that begin to
appear only in the next order of the weak-coupling expansion.

A stronger assumption is that the time-dependence of ρI,S(t) can be completely ignored on
the right-hand side — then we may replace ρI,S(t) inside the integral by ρI,S(T ), obtaining a
first-order differential equation for ρI,S(T ). This is called the “Born-Markov” approximation.
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In what might be called the “extreme Markovian limit,” the correlation time of the bath is
actually zero: 〈Bj(t)Bi(t

′)〉 = Kjiδ(t− t′), and we obtain the Lindblad master equation in
the interaction picture:

ρ̇I,S(T ) = Kji

(
2Ai(T )ρI,S(T )Aj(T ) −Aj(T )Ai(T )ρI,S(T )− ρI,S(T )Aj(T )Ai(T )

)
. (58)

Radiative damping

In the spin boson model, the oscillator bath couples to σz. Thus the qubit decoheres in the
σz eigenbasis, but there is no relaxation or excitation, i.e., the excited state of the qubit
does not spontaneously decay to the ground state, and the ground state does not become
thermally excited.

Another interesting model of decoherence is the radiatively damped two-level atom. Here
the Hamiltonian of system and bath is

H =
1

2
ωσz +

∑

k

ωka
†
kωk +

∑

k

(
gkakσ

+ + g∗ka
†
kσ

−
)

; (59)

the atom becomes excited if it absorbs energy from the radiation bath, and it can decay by
emitting a radiation quantum. If the radiation bath is thermal, then the 〈a(t)a(0)〉β and
〈a†(t)a†(0)〉β correlators vanish, so that the Born-approximation equation of motion in the
interaction picture becomes

ρ̇(T ) =
∫ T

0
dt
∑

k

|gk|2
[

〈ak(T )a†k(t)〉β
(
σ−(t)ρ(t)σ+(T )− σ+(T )σ−(t)ρ(t)

)

+ 〈ak(t)a
†
k(T )〉β

(
σ−(T )ρ(t)σ+(t)− ρ(t)σ+(t)σ−(T )

)

+ 〈a†k(T )ak(t)〉β
(
σ+(t)ρ(t)σ−(T )− σ−(T )σ+(t)ρ(t)

)

+ 〈a†k(t)ak(T )〉β
(
σ+(T )ρ(t)σ−(t)− ρ(t)σ−(t)σ+(T )

) ]
. (60)

It is now understood that ρ(t) and σ±(t) denote operators in the HS (i.e., the system’s)
interaction picture, while ak(t), a(t)

†
k are operators in the HB (i.e., the bath’s) interaction

picture. (To write down all the terms correctly in eq.(60), one recalls that e.g. σ+(t) acting
on the atom is always accompanied by a(t) acting on the bath, while σ−(t) is accompanied
by a†(t). One also notes that in a term of the form σσρ, σ(T ) must by furthest to the left,
while in a term of the form ρσσ, σ(T ) must be furthest to the right.)

Defining the positive and negative frequency parts of the thermal correlators by

K+
β (t) =

∑

k

|gk|2e−iωk t〈aka
†
k〉β ,

K−
β (t) =

∑

k

|gk|2eiωkt〈a†kak〉β , (61)

and using σ+(t) = eiωtσ+, σ−(t) = e−iωtσ−, we may write

ρ̇(T ) =
∫ T

0
dt
[

K+
β (T − t)eiω(T−t)

(
σ−ρ(t)σ+ − σ+σ−ρ(t)

)
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+ K+
β (t− T )e−iω(T−t)

(
σ−ρ(t)σ+ − ρ(t)σ+σ−

)

+ K−
β (T − t)e−iω(T−t)

(
σ+ρ(t)σ− − σ−σ+ρ(t)

)

+ K−
β (t− T )eiω(T−t)

(
σ+ρ(t)σ− − ρ(t)σ−σ+

) ]
. (62)

In the Markovian limit, we regard the correlation time of the bath to be short compared
to the time scale for the evolution of the system (in the interaction picture). Then we may
extend the integral over t indefinitely into the past (replace the lower limit of integration by
−∞), and replace ρ(t) by ρ(T ). Making the change of integration variable s = T − t, and
noting that K+

β (t)∗ = K+
β (−t) and that K−

β (t)∗ = K−
β (−t), we define real quantities γ, δ, κ, η

by

∫ ∞

0
ds K+

β (s)eiωs =
1

2
γ + iδ ,

∫ ∞

0
ds K+

β (−s)e−iωs =
1

2
γ − iδ ,

∫ ∞

0
ds K−

β (s)e−iωs =
1

2
κ+ iη ,

∫ ∞

0
ds K−

β (−s)eiωs =
1

2
κ− iη . (63)

Making these substitutions, we find the interaction picture equation of motion

ρ̇ = γ
(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)

+κ
(
σ+ρσ− − 1

2
σ−σ+ρ − 1

2
ρσ−σ+

)

−iδ[σ+σ−, ρ]− iη[σ−σ+, ρ] . (64)

Thus we find the expected Markovian Lindblad terms describing atomic decay with rate
γ and excitation with rate κ. In addition, the fluctuations of the bath renormalize the
system Hamiltonian. Noting that σ+σ− = 1

2
(1 + σz) and σ−σ+ = 1

2
(1 − σz) are projection

operators onto the σz eigenstates with eigenvalues +1 and −1 respectively, we see that δ is
an additive renormalization of the energy of the atomic excited state |e〉 (σz = 1), and η is
an additive renormalization of the energy of the atomic ground state |g〉 (σz = −1).

At strictly zero temperature (β = ∞), K−
∞(t) = 0, so that κ and η vanish, while γ and

δ remain nonzero. In the zero-temperature limit, the excited state can still decay, but there
are no thermal quanta to drive the atom from the ground state to the excited state. There is
also a surviving contribution to the renormalization of the energy splitting, the Lamb shift.

At zero temperature, 〈aka
†
k〉 = 1; therefore, in terms of the spectral function J(ω) of the

bath, we may express K+
β (s) as

K+
∞(s) =

∫ ∞

0
dω′J(ω′)e−iω′s , (65)

and so
1

2
γ0 + iδ0 =

∫ ∞

0
dsK+

∞(s) =
∫ ∞

0
dω′J(ω′)

(
lim

T→∞

∫ T

0
ds ei(ω−ω′)s

)
. (66)
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One way to make sense of the limit is to imagine that ω −ω′ has a small positive imaginary
part, in which case we have

1

2
γ0 + iδ0 =

∫ ∞

0
dω′ −i

ω′ − ω − iε
J(ω′) , (67)

where it is understood that we are to take the limit ε → 0+. Appearing in the integral

is the Green function
(
i d
dt
− ω

)−1
for the time-dependent Schrödinger equation, with the

pole at ω′ = ω infinitesimally displace above the real axis in the ω′ plane (corresponding
to a advanced boundary condition for the Green function, which is appropriate because we
are to integrate over times earlier than T when we evaluate ρ̇I(T )). Also appearing in the
integral is the bath’s spectral function, essentially a density-of-states factor modulated by
the strength of the coupling of the atom to the oscillators. The integral describes a virtual
process at zero temperature, in which the atom makes a transition from the excited state
to the ground state, emitting a quantum which is later absorbed as the atom returns to the
excited state.

To find the real and imaginary parts 1
2
γ + iδ of the integral, we note that

−i
ω′ − ω − iε

= πδ(ω′ − ω) + PV
−i

ω′ − ω
, (68)

where PV denotes the Cauchy principal value; thus

γ = 2πJ(ω) , δ = PV
∫ ∞

0
dω′J(ω′)

−i
ω′ − ω

. (69)

The result for the decay rate, involving the emission of real quanta with energy ω, is just
what one expects from “Fermi’s Golden Rule,” — the matrix element of the perturbation
and the appropriate density-of-final-states factor have been absorbed into the bath’s spectral
function J(ω). The Lamb shift involves virtual quanta of all frequencies, and is potentially
divergent, depending on the high-frequency behavior of the spectral function J(ω) (an ultra-
violet divergence can be handled as in the standard renormalization program for quantum
electrodynamics).

It is actually easier to get the result for the decay rate γ, for any value of β, directly from
eq.(63):

γ =
∫ ∞

0
dsK+

β (s)eiωs +
∫ ∞

0
dsK+

β (−s)e−iωs =
∫ ∞

−∞
dsK+

β (s)eiωs = K̃+
β (ω) , (70)

and similarly

κ =
∫ ∞

0
dsK−

β (s)e−iωs +
∫ ∞

0
dsK−

β (−s)eiωs =
∫ ∞

−∞
dsK−

β (s)e−iωs = K̃−
β (−ω) . (71)

Thus one says that the spontaneous decay rate is determined by the strength of the positive
frequency (thermal and vacuum) noise at the transition frequency ω, while the excitation
rate is determined by the strength of the negative frequency (thermal) noise at the transition
frequency. Of course, this statement holds very generally, not just for the particular model
of radiative damping we have discussed here.
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The weak-coupling limit generalized

In our model of radiative damping, the operators σ+ and σ− acting on the system have
“definite frequency” — that is, they alter the energy of the system by a definite amount. In
general, if the system Hamiltonian is time-independent, operators acting on the system can
be expanded in a basis {Aω} of operators with definite frequency:

[HS, Aω] = −ωAω ; (72)

this basis is determined by diagonalizing the adjoint action of the system Hamiltonian. An
operator Aω with frequency ω > 0 lowers the energy of the system by h̄ω; its adjoint A†

ω has
frequency −ω and raises the system’s energy. An operator of definite frequency evolves in
the interaction picture according to

eiHStAωe
−iHS t = e−iωtAω (73)

(as can be verified by differentiating both sides with respect to t).
Let the system-bath coupling be A ⊗B, where A and B are both Hermitian; hence the

system operator A can be expanded as

A =
∑

ω

Aω =
∑

ω

A†
ω . (74)

Assuming that the bath’s two point correlation function K(t−T ) = 〈B(t)B(T )〉 is stationary
(time-translation invariant), plugging into eq.(57) yields

ρ̇(T ) =
∑

ω,ω′

∫ T

0
dt

[
K(t− T )e−iω′Teiωt

(
Aω′ρ(t)A†

ω − ρ(t)A†
ωAω′

)

+ K(T − t)e−iωteiω′T
(
Aωρ(t)A

†
ω′ −A†

ω′Aωρ(t)
) ]

, (75)

and making the substitution t = T − s we find

ρ̇(T ) =
∑

ω,ω′

[
ei(ω−ω′)T

∫ T

0
ds K(−s)e−iωs

(
Aω′ρ(T − s)A†

ω − ρ(T − s)A†
ωAω′

)

+ e−i(ω−ω′)T
∫ T

0
ds K(s)eiωs

(
Aωρ(T − s)A†

ω′ −A†
ω′Aωρ(T − s)

) ]
, (76)

The terms with ω 6= ω′ oscillate rapidly if the time T of observation is long compared
to the inverse frequency difference (ω − ω′)−1; the oscillations average to zero and so these
terms can be neglected. Thus, if we consider the “coarse-grained” evolution over a time that
is long compared to the time scale set by the relevant “Bohr frequencies” of the system, then
only the terms with ω = ω′ survive.

For the surviving terms, as in our discussion of radiative damping, if we replace ρ(T − s)
by ρ(T ) and extend the upper limit of the s integral to infinity (these approximations are
reasonable if the time T is long compared to the correlation time τcorr of the bath, and if the
interaction-picture evolution of the system is slow compared to τcorr), then we obtain

ρ̇ =
∑

ω>0

K̃(ω)
(
AωρA

†
ω − 1

2
A†

ωAωρ−
1

2
ρA†

ωAω

)

+
∑

ω>0

K̃(−ω)
(
A†

ωρAω − 1

2
AωA

†
ωρ −

1

2
ρAωA

†
ω

)
, (77)
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(ignoring the energy shifts, which can be absorbed into the system Hamiltonian). I have
separated the terms into two sums to emphasize that the negative frequency fluctuations
of the bath excite the system, while the positive frequency fluctuations are responsible for
relaxation. This evolution equation is sometimes said to be the Davies master equation. If
the bath is in a thermal state that obeys the KMS condition K̃(−ω) = e−βωK̃(ω), a thermal
state ρ = e−βHS of the system will be stationary if it evolves according to this equation.

If the initial density operator is diagonal in the energy eigenstate basis of the system,
then evolution governed by the Davies master equation preserves this property. The terms
contributing to ρ̇ with rapidly oscillating phases (which we argued can be neglected) are
off-diagonal in the system’s energy eigenstate basis. In a sense the oscillating phase is an
artifact of working in the interaction picture and would not be present if we re-expressed the
time derivative of the density operator in the Schrödinger picture. We emphasize again that
to justify ignoring the off-diagonal terms we must coarse grain in time. That is, it is implicit
that we consider not the instantaneous value of ρ̇ in the interaction picture, but rather the
result of integrating ρ̇ for a sufficiently long finite time, such that it is a good approximation
to say that the oscillating phase averages to zero.

Alicki, Lidar, and Zanardi (quant-ph/0506201), invoking the derivation of the Davies
master equation, have suggested that a Markovian noise model cannot be applicable over a
time period comparable to the working period of a quantum gate. Their observation is that
the time scale for realizing a gate is determined by a difference of two system frequencies:
τ−1
gate ≈ ω − ω′. For the Markovian approximation to be good, then, the observation time T

must be large compared to τgate.
This conclusion seems too strong. We should keep in mind that the system may have a

range of relevant energy scales, just as the fluctuations of the bath may also span a range of
frequencies. Thus the dominant noise frequencies might differ by orders of magnitude from
the frequencies that characterize the speed of the gates.

Phase noise and quantum gates

Since phase noise tends to be more prevalent than relaxation in many potential realizations of
quantum hardware, it would seem to make sense to use fault-tolerant protocols that protect
gates more effectively against phase errors than against bit flips. Formulating such protocols
faces interesting challenges, because we need to be careful to avoid using gates (such as
Hadamard gates) that transform phase errors into bit flips.

But one should also ask whether the concept of a quantum computer that is subject to
much stronger phase errors than bit flips really makes sense in a reasonable physical context.
The trouble is that even if resting (memory) qubits are subject only to phase errors and no
bit flips, the phase errors can be transformed into bit flips during the execution of the gate.

As an example, suppose we are trying to perform a NOT (σx) gate on a qubit that is in
a fluctuating magnetic field that causes phase noise. We may take the Hamiltonian to be

H =
1

2
g(t)σx +

1

2
f(t)σz . (78)

Here g(t) is a deterministic classical function that can be controlled by the operator of the
quantum computer, but f(t) is fluctuating; the fluctuations are assumed to be Gaussian with

17



mean zero and covariance [f(t)f(t′)]f = K(t− t′).
The time evolution operator for the ideal system is

US(t) = exp
(
−i1

2
G(t)σx

)
, G(t) =

∫ t

0
dt g(t) . (79)

Therefore, a NOT can be implemented in time T by choosing g(t) such that G(T ) = π (a
“π pulse”).

We can analyze the effect of the noise on the ideal gate using interaction-picture per-
turbation theory, as in eq.(56). Let us work to lowest nontrivial order (that is, quadratic
order) in the expansion, which is a reasonable approximation if the effect of the dephasing
on the gate is small. In the case where the system-bath coupling is simply HSB = A⊗B (A
is a Hermitian operator acting on the system, and B is a Hermitian operator acting on the
bath), then to quadratic order the evolution equation for the system’s interaction picture
density operator ρI is

ρI(T ) =
∫ T

0
dt
∫ T

0
ds〈B(s)B(t)〉 A(t)ρI(0)A(s)

−
∫ T

0
ds
∫ s

0
dt〈B(s)B(t)〉 A(s)A(t)ρI(0)

−
∫ T

0
dt
∫ t

0
ds〈B(s)B(t)〉 ρI (0)A(s)A(t) (80)

(for clarity the time ordering is indicated explicitly). In the Markovian limit, withK(t−t′) =
κδ(t− t′), this expression becomes

ρI(T ) = κ
∫ T

0
dt
(
A(t)ρI(0)A(t) − 1

2
A(t)A(t)ρI(0) −

1

2
ρI(0)A(t)A(t)

)
. (81)

Now, in the case of our model describing a NOT gate subject to dephasing,

A(t) =
1

2
US(t)†σzUS(t) =

1

2
(σz cosG(t) + σy sinG(t)) , (82)

so that in the Markovian case, we have

ρI(T ) =
κ

4

∫ T

0
dt [σz cosG(t) + σy sinG(t)] ρI(0) [σz cosG(t) + σy sinG(t)] + . . . (83)

where the ellipsis represents the σσρ and ρσσ terms needed to ensure that the evolution is
normalization preserving. Expanding this expression we obtain

ρI(T ) =

(
κ

4

∫ T

0
dt cos2G(t)

)
σzρI(0)σz +

(
κ

4

∫ T

0
dt sin2G(t)

)
σyρI(0)σy

+

(
κ

4

∫ T

0
dt cosG(t) sinG(t)

)
(σzρI(0)σy + σyρI(0)σz) + . . . (84)

To do a NOT gate, we choose G(0) = 0 and G(T ) = π. If the pulse is symmetric about
t = T/2, then the third, off-diagonal, term is sure to vanish. The sum of the coefficients
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of the first two terms is κT/4, but the relative size of the two terms depends on the pulse
shape. In particular, if G(t) is close to either 0 or π most of the time, except for a rapid
swing from 0 to π, then the second term will be suppressed.

Of course, this is obvious. The effect of the first term is the same as if the gate were
first applied ideally, followed by a σz error occurring with a specified probability, while the
second term describes a σy error following the ideal gate. If the NOT gate is performed
very rapidly, followed by a pause for time T , the phase error is like one that afflicts a resting
memory qubit stored for time T . But if the NOT gate is performed more slowly, phase errors
are more likely to occur while the qubit is rotating — the ideal system dynamics propagates
such phase errors to bit flips. For example, if a σz error occurs right in the middle of the
rotation by π in the yz-plane, then the spin will end up with values of σz and σx that are
opposite to the values they would have if an ideal NOT gate had been applied — that is a
σy error will have occurred.

Is there an alternative scheme for implementing gates that does not propagate phase
errors to bit flips, other than the rapid pulse followed by a long pause? For example, if we
can measure both σx and σz, then it is possible to realize universal quantum computation
using only gates that can be implemented by turning on and off interaction Hamiltonians
that commute with σz. But is it possible to realize a universal set of fault-tolerant encoded
gates using such interactions, where the quantum code can correct many more phase errors
than bit flips?

A new threshold estimate?

Aliferis-Gottesman-Preskill (AGP, quant-ph/0504218) proved a quantum threshold theorem
that applies to non-Markovian noise, but unfortunately the AGP theorem does not apply
when the noise is due to a bath of harmonic oscillators (as in the spin-boson model).

Let’s recall the AGP argument. We may regard a quantum circuit as a unitary operator
USB acting on the system qubits and the bath, which can be expressed as a coherent sum of
“fault paths”:

USB =
∑

fault paths . (85)

In each fault path, some of the gates are ideal, and some are designated as faulty. The
defining feature of the local noise model considered by AGP is: Let Ir denote any particular
set of r locations (i.e., gates) in the circuit, and let E(Ir) denote the sum of all terms in the
fault path expansion such that all of the locations in Ir are faulty. Then

‖E((Ir)‖ ≤ ηr , (86)

where ‖ · ‖ denotes the operator (sup) norm. We say that η is the strength of the noise.
AGP showed that if we apply “level reduction” to a fault-tolerant quantum circuit (reducing
a circuit that uses a level-k concatenated quantum error-correcting code to an equivalent
circuit using a level-(k−1) code), then we obtain a new fault-path expansion which also
obeys the local noise condition, with a new noise strength η(1) = O(η2) that is smaller than
η, provided η < ηth. Applying level-reduction k times in succession proves the threshold
theorem.
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Furthermore, the local noise condition holds in a Hamiltonian framework. Suppose that
USB arises from integrating the Schödinger equation for the time-dependent Hamiltonian

H = HS +HB +HSB ; (87)

HereHS is the system Hamiltonian that realizes the ideal quantum circuit,HB is an arbitrary
Hamiltonian of the bath, and

HSB =
∑

a

HSB,a (88)

is a sum of terms where at each time each term corresponds to a particular location where
a gate is being performed at that time. That is, if a denotes a single-qubit location, then
HSB,a acts on only that system qubit (and has an arbitrary action on the bath); if a denotes
a two-qubit location, then HSB,a acts on those two system qubits, etc. Then we may express
the noise strength as

η = t0 · Max ‖HSB,a‖ , (89)

where t0 is the gate working period, and the Max is taken with respect to all times and
locations. Aharonov-Kitaev-Preskill (quant-ph/0510231) also showed that the local noise
condition is satisfied if the system-bath coupling includes terms that are “always on,” where
each term acts on only a few system qubits. For either case, the local noise condition is
proven by considering a formal expansion of USB in powers of HSB and observing that at
least one insertion of HSB must occur at each faulty location.

The AGP argument proves that fault-tolerance works for fairly general non-Markovian
noise models, but it has two big drawbacks. First, experimentalists do not measure Max ‖HSB,a‖,
and it would be preferable to express the threshold condition in terms of a characterization of
the noise that is more directly accessible in experiments. Second, there are reasonable noise
models (like the spin-boson model) for which we expect fault-tolerant circuits to succeed,
yet ‖HSB,a‖ = ∞.

In the spin-boson model, 〈HSB,a〉 can be large when the oscillator bath is highly excited,
but when the bath temperature is small, the fluctuations of the oscillator’s quadrature am-
plitude are limited; therefore we might expect to be able to use some variant of the AGP
argument. One reason it is not straightforward to make this idea rigorous is that estimates
of the “effective” value of ‖HSB,a‖ are sensitive to the very-high-frequency thermal fluctua-
tions of the bath (Terhal and Burkard made this remark in quant-ph/0402104). We would
like to incorporate into the analysis the idea that the high-frequency noise fluctuations tend
to average out over the gate working period, assuming that the time dependence of HS is
sufficiently smooth.

If the pure state |ψ〉 is an eigenstate of HB, then it is diagonal in the number-state basis,
and therefore

‖HSB,a|ψ〉‖2 ≤ 1

4

∑

k

|gk|2〈ψ|aka
†
k + a†kak|ψ〉 =

1

2

∑

k

|gk|2
〈
nk +

1

2

〉
. (90)

Averaging over the thermal ensemble gives

〈
‖HSB,a|ψ〉‖2

〉
β
≤ 1

4

∫ ∞

0
dωJ(ω) coth(βω/2) =

1

8π

∫ ∞

0
dω
(
K̃(ω) + K̃(−ω)

)
=

1

4
K(t = 0) .

(91)
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In the Ohmic case where J(ω) = Aωe−ω/Λ and Λ � β−1 is a high-frequency cutoff, the ω
integral is dominated by frequencies near the cutoff:

‖HSB,a‖ ≈
√
A Λ . (92)

By failing to take into account the softening of the high-frequency contribution due to coarse-
graining in time, this estimate exaggerates the impact of the perturbation.

Suppose, then, that we consider a noise model in which the correlators of the bath
are Gaussian. Should we be able to prove a threshold theorem under suitable conditions
on the two-point function? In particular, we might expect to be able to find a simple
characterization in the Ohmic case, or more generally if K̃(ω) approaches a finite nonzero
limit as ω → 0. (Though 1/f noise may dominate at low frequency, we may assume that it
has been suppressed through the appropriate use of spin-echo pulse sequences.)

We will need to determine how the bath correlators propagate as the level of a concate-
nated coding scheme changes. We don’t expect to be able to do this exactly, but we can hope
to establish inequalities that describe how the noise weakens with increasing level. Gaussian-
ity will not be preserved under this coarse-graining step — that is, the correlations among
faults in higher-level gadgets will not be completely characterized by the two-point correla-
tion functions. Rather, connected correlations will be induced when we “integrate out” the
fine-grained noise. However, these connected many-point functions will be systematically
suppressed, so the effective noise model should remain well behaved (i.e., will not become
too highly correlated) as the level of concatenation advances. (And since Gaussianity cannot
be assumed at higher levels, we may as well relax that assumption at the lowest level – the
argument, if it works at all, will apply as long as the bath’s connected correlation functions
are adequately suppressed.)

In particular, if the noise is correlated temporally but not spatially, we expect fault-
tolerant protocols to be effective — if noise damages a qubit, things will not be much worse
if further damage occurs to the same qubit within the same working period.

A reasonable (but too naive) guess for a threshold condition that should apply for Gaus-
sian noise is

η ≡
∫

Rec
dtdx

∫

All
dt′dx′ K(t, x; t′, x′) ≤ ηth . (93)

Here we have indicated the dependence of the two-point correlation function on both time
(t) and spatial position (x). To define the parameter η, the first argument of the correlator
is integrated over a level-1 “rectangle,” a gadget that realizes a fault-tolerant encoded gate,
while the second argument is integrated over all locations in the entire circuit. This integral
adds together contributions from all the possible “contractions” of locations in the rectangle
with other locations, the contractions that can generate faults in the rectangle. Thus, if η
is small, most level-1 rectangles have no faults, and only relatively few have two or more
faults. Note that η is fairly insensitive to noise that has wavelength or period that is small
compared to the spatial or temporal size of the rectangle.

A technical difficulty is that when we try to bound the trace norm of the sum of “bad”
fault paths, it is not quite the quantity η that arises. Suppose that we consider the case of
a Gaussian fluctuating magnetic field f(t, x), and we express the output density operator
produced by a noisy circuit as

ρ(tf) =
∫
dµ(f)

(∑
fault paths

)
ρ(ti)

(∑
fault paths

)†
, (94)
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where
∫
dµ(f) denotes the normalized Gaussian integration over the field f . To upper bound

the trace norm of a sum of fault paths that are bad at specified locations, we can pull the
average over f outside the norm, and then for each fixed f bound the norm by following
a variant of the AGP argument. But then in the upper bound the fluctuating magnetic
field f(t, x) becomes replaced by |f(t, x)|, and unfortunately the correlators of the absolute
value |f | are more ultraviolet sensitive than the correlators of f itself. For example, just

as a Gaussian real variable x with mean zero satisfies 〈 |x| 〉 =
√

2〈x2〉/π, so the one-point
function of a Gaussian field is

〈 |f(t)| 〉 =

√
2

π
·
√
K(0) , (95)

which blows up in the limit in which the noise is Markovian and K(t) is a δ-function.
What is missing from the analysis and needs to be folded in somehow is the idea that

because the system Hamiltonian is slowly varying we can filter out the high-frequency noise
by smearing the insertion of f(t) over the working period of a gate.

John Preskill, 3 July 2006
Updated 2 December 2006
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