Problem 1 - Differential Cross Section

a) First, we know that for $r > r_0$, V = 0. Thus, $\frac{m}{2}v^2 = E$, so that $v = \sqrt{2mE}$. Similarly, when $r < r_0$, $\frac{m}{2}v^2 - C = E$, so that $v' = \sqrt{2m(E+C)}$. Since in both of these regions, the potential is constant, the particles travel in straight lines – they only change directions at the boundary.

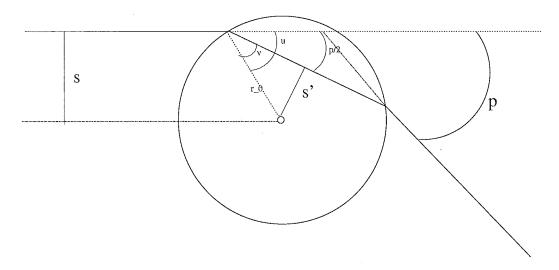


Figure 1:

Now, we would like to calculate p as a function of s. To do so, notice that by conservation of angular momentum about r = 0, we have

$$mvs = mv's'$$

$$\Rightarrow s' = s\sqrt{\frac{2mE}{2m(E+C)}} = s\sqrt{\frac{E}{E+C}}.$$

Now, from the figure, we see that $sin(v) = \frac{s'}{r_0}$ and $sin(u) = \frac{s}{r_0}$, so

$$\frac{p}{2} = u - v = \sin^{-1}(\frac{s}{r_0}) - \sin^{-1}(\frac{s'}{r_0})$$

$$= sin^{-1}(\frac{s}{r_0}) - sin^{-1}(\frac{s\sqrt{\frac{E}{E+C}}}{r_0})$$

$$\Rightarrow p = 2(sin^{-1}(\frac{s}{r_0}) - sin^{-1}(\frac{s\sqrt{\frac{E}{E+C}}}{r_0})).$$

b) Now, the differential cross section is given by

$$\frac{d\sigma}{d\Omega} = \frac{s}{\sin(p)} \left| \frac{ds}{dp} \right|.$$

So, lets find an expression for s(p):

$$\begin{split} \cos(\frac{p}{2}) &= \cos(\sin^{-1}(\frac{s}{r_0}) - \sin^{-1}(\frac{s\sqrt{\frac{E}{E+C}}}{r_0}) \\ &= \cos(\sin^{-1}(\frac{s}{r_0}))\cos(\sin^{-1}(\frac{s\sqrt{\frac{E}{E+C}}}{r_0})) + \sin(\sin^{-1}(\frac{s}{r_0}))\sin(\sin^{-1}(\frac{s\sqrt{\frac{E}{E+C}}}{r_0})) \\ &= \sqrt{(1-\frac{s^2}{r_0^2})(1-(\frac{E}{E+C})(\frac{s^2}{r_0^2}))} + \sqrt{\frac{E}{E+C}}\frac{s^2}{r_0^2}. \end{split}$$

A little more work shows that

$$s = \frac{nr_0 sin(\frac{p}{2})}{\sqrt{n^2 + 1 - 2ncos(\frac{p}{2})}},$$

where we introduced the notation $n = \sqrt{\frac{E+C}{E}}$. Now, we can take the derivative to get

$$\frac{d\sigma}{d\Omega} = \frac{s}{sin(p)} \left| \frac{ds}{dp} \right| = \frac{n^2 r_0^2}{4cos(\frac{p}{2})} \frac{(n^2 cos(p/2) + cos(p/2) - n cos^2(p/2) - n)}{(n^2 + 1 - 2n cos(p/2))^2}.$$

Foucault Pendulum

Let ω be the natural frequency of the pendulum, λ_0 the latitude of the pendulum, and Ω the angular velocity of the earth.

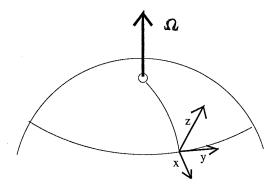


Figure 2: look.

In the approximation of small oscillations, we have \dot{z} small compared to \dot{x} and \dot{y} . Thus, the horizontal component of the coriolis force will be $2m\Omega_z(\dot{y}\hat{x}-\dot{x}\hat{y})$. This gives the equations of motion as

$$\ddot{x} = -\omega^2 x + 2\dot{y}\Omega_z$$

$$\ddot{y} = -\omega^2 y - 2\dot{x}\Omega_z,$$

where $\Omega_z = |\Omega| sin(\lambda_0)$, and λ_0 is the latitude. Now, set $\eta = x + iy$, and the two equations reduce to one complex equation,

$$\ddot{\mathbf{\eta}} + i2\Omega_z \dot{\mathbf{\eta}} + \omega^2 \mathbf{\eta} = 0,$$

which we can solve using the ansatz $\eta = e^{\lambda t}$. The solution is $\lambda = -i\Omega_z \pm i\sqrt{\Omega_z^2 + \omega^2} = -i\Omega_z \pm i\omega$, where the second equality is true to first order in $\frac{\Omega_z}{\omega}$, and we know this quantity is small. Equivalently, the solution is

$$\mathbf{n} = e^{-i\Omega_z t} (c_1 e^{i\omega t} + c_2 e^{-i\omega t}),$$

which makes it clear that the effect of the coriolis force is to cause the x-y plane to rotate at angular velocity $-\Omega_z = |\Omega| \sin(\lambda_0)$.

Torque Free Precession

Choose a basis such that \hat{e}_3 points along the direction of the line through both the mountains, and \hat{e}_1 and \hat{e}_2 lie in the plane perpendicular to that line. Then,

$$I = \begin{pmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{pmatrix} = \begin{pmatrix} \frac{2}{5}MR^2 + 2mR^2 & 0 & 0 \\ 0 & \frac{2}{5}MR^2 + 2mR^2 & 0 \\ 0 & 0 & \frac{2}{5}MR^2 \end{pmatrix}.$$

The Euler equations are then

$$I_{11}\dot{\omega}_1 = (I_{11} - I_{33})\omega_3\omega_2$$
$$I_{22}\dot{\omega}_2 = -(I_{11} - I_{33})\omega_3\omega_1$$
$$I_{33}\dot{\omega}_3 = 0.$$

These have the solution

$$\omega_1 = A\cos(\Omega t)$$
$$\omega_2 = A\sin(\Omega t)$$

$$\omega_3 = constant,$$

where
$$\Omega = \frac{I_{33} - I_{11}}{I_{11}} \omega_3 = \frac{-2mR^2}{\frac{2}{5}MR^2 + 2mR^2} \omega_3$$
.
Now, $\omega_3 = \frac{\omega}{\sqrt{2}}$, so we can numbers given to find

$$|\Omega| = 3.7 \times 10^{-12} radday^{-1}.$$

Thus, the north pole will wander by $3.7 \times 10^{-12} \times 365 \frac{days}{year} \times 100 years =$ $1.35 \times 10^{-7} rad$, which translates to a distance of $\frac{6 \times 10^6 m}{\sqrt{2}} \times 1.35 \times 10^{-7} rad = 0.6m$.

a distance of
$$\frac{6 \times 10^{6} m}{\sqrt{5}} \times 1.35 \times 10^{-7} rad = 0.6 m$$
.

Spinning Cube

We define our coordinates as follows: the center of mass of the cube is at the origin, and the x_i axes each point along directions perpendicular to the faces of the cube.

The off-diagonal elements are zero.

$$I_{jk} = -\frac{m}{a^3} \left(\int_{\frac{-a}{2}}^{\frac{a}{2}} dx_i \right) \left(\int_{\frac{-a}{2}}^{\frac{a}{2}} x_j dx_j \right) \left(\int_{\frac{-a}{2}}^{\frac{a}{2}} x_k dx_k \right) = 0,$$

where $j \neq k$ and $i \neq j, k$.

The diagonal elements are all the same, and equal to

$$I_{1} = \frac{m}{a^{3}} \int_{\frac{-a}{2}}^{\frac{a}{2}} \int_{\frac{-a}{2}}^{\frac{a}{2}} \int_{\frac{-a}{2}}^{\frac{a}{2}} (x_{2}^{2} + x_{3}^{2}) dx_{1} dx_{2} dx_{3}$$
$$= \frac{1}{6} ma^{2}.$$

So,

$$I=\left(egin{array}{ccc} rac{1}{6}ma^2 & 0 & 0 \ 0 & rac{1}{6}ma^2 & 0 \ 0 & 0 & rac{1}{6}ma^2 \end{array}
ight),$$

and the moment of inertia about the body diagonal is

$$(\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}) \begin{pmatrix} \frac{1}{6} ma^2 & 0 & 0\\ 0 & \frac{1}{6} ma^2 & 0\\ 0 & 0 & \frac{1}{6} ma^2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$= \frac{1}{6} ma^2.$$