Problem 1 - Differential Cross Section

a) First, we know that for r > ro, V = 0. Thus, —72”-'02 = F,sothat v = v2mkE.
Similarly, when r < ro, 2v® — C = E, so that v' = 1/2m(E + C). Since in
both of these regions, the potential is constant, the particles travel in straight
lines — they only change directions at the boundary.

Figure 1:

Now, we would like to calculate p as a function of s. To do so, notice that
by conservation of angular momentum about r = 0, we have

mus = mu's'
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Now, from the figure, we see that sin(v) = % and sin(u) = ;*, so
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b) Now, the differential cross section is given by
do __s ‘ﬁ‘
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So, lets find an expression for s(p):
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A little more work shows that
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where we introduced the notation n = =,
Now, we can take the derivative to get

S

s . ds n?r¢  (n*cos(p/2) + cos(p/2) — ncos*(p/2) — n)

do
(n? +1 — 2ncos(p/2))?

Q- sin(p) ‘d_p‘ - 4cos(%)

Foucault Pendulum

Let w be the natural frequency of the pendulum, Ay the latitude of the
pendulum, and €2 the angular velocity of the earth.




Figure 2: look.
In the approximation of small oscillations, we have Z small compared to %
and g. Thus, the horizontal component of the coriolis force will be
2mQ, (yZ — £7). This gives the equations of motion as

& = —w?z + 29Q,

g = _w2y - 2$Qz7

where 2, = |Q|sin(Ao), and Aq is the latitude.
Now, set § = z + iy, and the two equations reduce to one complex equation,

| + 200 + W’y =0,

which we can solve using the ansatz n = e*. The solution is
A= —iQ, £1i4/Q2 + w? = —iQ), + iw, where the second equality is true to
first order in %&, and we know this quantity is small. Equivalently, the
solution is :

——int( —iwt),

n=e c1e™t + coe
which makes it clear that the effect of the coriolis force is to cause the z —y
plane to rotate at angular velocity —, = |Q2]sin(Ao)-




Torque Free Precession

Choose a basis such that é; points along the direction of the line through
both the mountains, and é; and é; lie in the plane perpendicular to that line.
Then,

Iy 0 0 ZMR? + 2mR? 0 0
I = 0 I22 0 = 0 %J\lfl),2 -}~ 2mR2 0 .
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The Fuler equations are then

Iy = (Ih1 — Is3)wsws
Inote = —(I11 — In3)wsws
I3303 = 0.
These have the solution

wi = Acos(t)

Wy = Asm(Qt)
ws = constant,
_ Ia-Iy,, _ _ —2mR?
where €} T W3 = Tarnagammr s
Now, ws = %, so we can numbers given to find

Q| = 3.7 x 107 radday ™.

Thus, the north pole will wander by 3.7 x 10712 x 365% x 100years =

1.35 x 10~ "rad, which translates to
a distance of 9%;23"—‘— x 1.35 x 10~ "rad = 0.6m.

Spinning Cube

We define our coordinates as follows: the center of mass of the cube is at the
origin, and the z; axes each point along directions perpendicular to the faces
of the cube.



The off-diagonal elements are zero.
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where j # k and 1 # j, k.
The diagonal elements are all the same, and equal to
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and the moment of inertia about the body diagonal is

So,
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