
Ph 12b Final Exam Solution
J. Preskill – Wednesday, 17 March 2010

1. Bound states of two narrow wells — 30 total points

A particle with mass m moves in one dimension, governed by the potential

V (x) =
−h̄2∆
m

(δ(x+ a) + δ(x− a)) ,

where δ(x) denotes the Dirac δ-function, and ∆ > 0. Recall that the δ-function
potential V (x) = −(h̄2∆/m)δ(x − a) causes the logarithmic derivative of the
wave function ϕ(x) to jump discontinuously at x = a:

ϕ′(a+)− ϕ′(a−) = −(2∆)ϕ(a) .

(a) (5 points) For ∆a sufficiently large, this potential has two bound states.
Sketch the wave functions ϕ0(x) and ϕ1(x) of the ground state and first
excited state. Hint: Be sure that each bound-state wave function has the
right number of nodes and the right symmetry.

See Figure 1 and Figure 2.

(b) (5 points) A normalizable even solution to the time-independent Schrödinger
equation can be expressed as

ϕ(x) = e−κx , x > a ,

ϕ(x) = A
(
eκx + e−κx

)
, −a < x < a

ϕ(x) = eκx , x < −a ,

for some real number A, where κ is related to the energy by E = −h̄2κ2/2m.
Use the appropriate matching conditions at x = a to derive a transcen-
dental equation that implicitly determines κa (and hence E) in terms of
∆a. Express your equation in the form

∆a = f(κa)

for some function f .

Matching ϕ(x) at x = a:

e−κa = A
(
eκa + e−κa

)
.

Matching ϕ′(x) at x = a:

−κe−κa = Aκ
(
eκa − e−κa

)
− 2∆e−κa .

Eliminating A using the first equation, the second equation becomes:

∆a =
1
2
κa (1 + tanhκa) .

1



Figure 1: Sketch of the ground state ϕ0(x).

(c) (5 points) For your solution in (b), how are κ and ∆ related in the limit
a → 0 ? Hint: In this limit, the two δ-functions coincide, so your result
should agree with what you expect for a single δ-function with twice the
strength.

In this limit tanhκa→ 0, and therefore κ = 2∆.

(d) (5 points) A normalizable odd solution to the time-independent Schrödinger
equation can be expressed as

ϕ(x) = e−κx , x > a ,

ϕ(x) = A
(
eκx − e−κx

)
, −a < x < a

ϕ(x) = −eκx , x < −a .

Use the appropriate matching conditions at x = a to derive a transcen-
dental equation that implicitly determines κa (and hence E) in terms of
∆a. Express your equation in the form

∆a = g(κa)

for some function g.

Matching ϕ(x) at x = a:

e−κa = A
(
eκa − e−κa

)
.

Matching ϕ′(x) at x = a:

−κe−κa = Aκ
(
eκa + e−κa

)
− 2∆e−κa .
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Figure 2: Sketch of the first excited state ϕ1(x).

Eliminating A using the first equation, the second equation becomes:

∆a =
1
2
κa (1 + cothκa) .

(e) (5 points) In the limit a → 0 considered in (c), the two delta functions
merge to one, and there is only one bound state. Thus there is a second
bound state only for sufficiently large ∆a. Find the value (∆a)1 such that
a second bound state exists if and only if ∆a > (∆a)1. Hint: Under what
condition does the equation found in (d) have a solution with κ > 0? It
may be useful to note that the function x(1 + coth(x)) is monotonically
increasing for x ∈ [0,∞].

Since x(1 + cothx)|x=0 = 1 and x(1 + cothx) > 1 for x > 0, there is a
normalizable first excited state for ∆a > 1/2.

(f) (5 points) Now consider the limit ∆a� 1; show that the splitting between
the energy E0 of the ground state and the energy E1 of the first excited
state has the form

E1 − E0 = C
h̄2∆2

2m
(
e−2∆a +O(e−4∆a)

)
,

and find the constant C. Hint: Use the approximations

tanhx ≡ ex − e−x

ex + e−x
= 1− 2e−2x +O(e−4x) ,

cothx ≡ ex + e−x

ex − e−x
= 1 + 2e−2x +O(e−4x) ,
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and note that the equation

B = x
(
1∓ e−2x

)
has the approximate solution

x = B
(
1± e−2B +O(e−4B)

)
for B � 1.

With these approximations, the condition for the ground state becomes

2∆a ≈ κa
(
2− 2e−2κa

)
,

or

κa ≈ ∆a
(
1 + e−2∆a

)
,

and the condition for the first excited state becomes

2∆a ≈ κa
(
2 + 2e−2κa

)
,

or

κa ≈ ∆a
(
1− e−2∆a

)
.

Therefore, the energies of ground state and first excited state are:

E0 ≈
−h̄2∆2

2m
(
1 + 2e−2∆a

)
, E1 ≈

−h̄2∆2

2m
(
1− 2e−2∆a

)
;

Thus, the energy splitting is:

E1 − E0 ≈
h̄2∆2

2m
(
4e−2∆a

)
i.e., C = 4.

2. Variational method — 30 total points

The variational method is a technique for estimating the ground state energy E0

of a Hamiltonian Ĥ. We choose a family of states, and then find the one in the
family that makes 〈Ĥ〉 as small as possible. The minimal value of 〈Ĥ〉 is our
estimate of E0. We can also use a variant of this method to estimate the energy
E1 of the first excited state.

(a) (5 points) Show that for any normalized state |ψ〉,

〈ψ|Ĥ|ψ〉 ≥ E0 .

Hint: Expand the state |ψ〉 as a sum over Ĥ eigenstates.

If |ψ〉 =
∑

i ai|ψi〉, with Ĥ|ψi〉 = Ei|ψi〉, then 〈ψ|Ĥ|ψ〉 =
∑

i |ai|2Ei.
And since Ei ≥ E0 if E0 is the ground state energy, we have 〈ψ|Ĥ|ψ〉 ≥∑

i |ai|2E0 = E0 (with the last equality holding because the state |ψ〉 is
normalized).
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(b) (5 points) Consider a Hamiltonian Ĥ = p̂2/2m + V (x̂) for a particle
in one dimension, where V is an even function. If this potential has at
least two bound states, then the ground state wave function ψ0(x) is an
even function of x, and the first-excited-state wave function ψ1(x) is an
odd function of x. Noting that 〈ϕ|ψ〉 = 0 where ψ(x) is any even function
of x and ϕ(x) is any odd function of x, show that for any normalized odd
wave function ϕ(x),

〈ϕ|Ĥ|ϕ〉 ≥ E1 .

Again we expand |ϕ〉 =
∑

i |ψi〉〈ψi|ϕ〉, but now note that 〈ψi|ϕ〉 = 0
whenever ψi is an even function; therefore only the odd eigenstates have
nonzero coefficients in the sum over i. For each odd eigenstate, the energy
satisfies Ei ≥ E1 where E1 is the energy of the first excited state; there-
fore we have 〈ψ|Ĥ|ψ〉 ≥

∑
i |ai|2E1 = E1 (with the last equality holding

because the state |ϕ〉 is normalized).

Now consider the one-dimensional Hamiltonian

Ĥ =
1

2m
p̂2 + F |x̂| ,

where |x̂| denotes the absolute value of x̂. As you know from a homework prob-
lem, the ground-state energy E0 and first-excited-state energy E1 for this Hamil-
tonian are

E0 ≈ 1.0188
(
h̄2F 2

2m

)1/3

, E1 ≈ 2.3381
(
h̄2F 2

2m

)1/3

.

We will use the variational method to estimate E0 and E1 for this Hamiltonian.
For estimating E0, we use the family of normalized even wave functions {|ψa〉},
where

ψa(x) =
1

π1/4a1/2
e−x2/2a2

,

and for estimating E1, we use the family of normalized odd wave functions
{|ϕa〉}, where

ϕa(x) =
√

2
π1/4a3/2

x e−x2/2a2
.

The following integrals may be useful for working this problem:∫ ∞

−∞
dx e−x2

=
√
π ,

∫ ∞

−∞
dx x2e−x2

=
√
π

2
,

∫ ∞

−∞
dx x4e−x2

=
3
√
π

4
,∫ ∞

−∞
dx |x|e−x2

=
∫ ∞

−∞
dx |x|3e−x2

= 1 .
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(c) (5 points) Compute 〈ψa|Ĥ|ψa〉 as a function of a.

Since Ĥ = −h̄2

2m
d2

dx2 + F |x̂|, we have (after integrating by parts)

〈ψa|Ĥ|ψa〉 =
∫ ∞

−∞
dx

(
h̄2

2m

∣∣∣∣ ddxψa(x)
∣∣∣∣2 + F |ψa(x)|2

)

=
1

a
√
π

∫ ∞

−∞
dx

(
h̄2

2m

( x
a2

)2

+ F |x|
)
e−x2/a2

.

Using the integrals listed above, we find:

〈ψa|Ĥ|ψa〉 =
h̄2

2ma2
· 1√

π
·
√
π

2
+ Fa · 1√

π
=

h̄2

4ma2
+
Fa√
π
.

(d) (5 points) Estimate E0 by minimizing the function found in (c). (If done
correctly, this calculation overestimates the value of E0 by less than 1%.)

The function to be minimized is

E0(a) ≡
1
2
Aa−2 +Ba , A =

h̄2

2m
, B =

F√
π
.

It is stationary for

0 =
d

da
E0(a) = −Aa−3 +B , or a = (A/B)1/3 ;

thus,

E0(a) =
(

1
2

+ 1
)(

AB2
)1/3

.

Finally, we obtain

E0,min =
3
2

(
h̄2

2m
· F

2

π

)1/3

= 1.024
(
h̄2F 2

2m

)1/3

.

Our estimate is too high by about 0.6%.

(e) (5 points) Compute 〈ϕa|Ĥ|ϕa〉 as a function of a.

〈ϕa|Ĥ|ϕa〉 =
∫ ∞

−∞
dx

(
h̄2

2m

∣∣∣∣ ddxϕa(x)
∣∣∣∣2 + F |ϕa(x)|2

)

=
2

a3
√
π

∫ ∞

−∞
dx

(
h̄2

2m

(
1− x2

a2

)2

+ F |x|3
)
e−x2/a2

.

Using the integrals listed above, we find:

〈ϕa|Ĥ|ϕa〉 =
h̄2

2ma2
· 2√
π
·
(√

π − 2
√
π

2
+

3
√
π

4

)
+Fa· 2√

π
=

3h̄2

4ma2
+

2Fa√
π
.
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(f) (5 points) Estimate E1 by minimizing the function found in (e). (If done
correctly, this calculation overestimates the value of E1 by less than 1%.)

Compared to part (c), A is now 3 times larger and B is twice as large;
hence AB2 is larger by the factor 3 · 22 = 12, and so we find:

E1,min =
3
2

(
12
π

)1/3(
h̄2F 2

2m

)1/3

= 2.3448
(
h̄2F 2

2m

)1/3

.

Our estimate is too high by about 0.3%.

3. Two correlated oscillators — 40 total points

Consider a system of two harmonic oscillators, labeled 1 and 2. The Hilbert
space of the system is H = H1 ⊗H2, where H1 is the Hilbert space of oscillator
1 and H2 is the Hilbert space of oscillator 2. For notational convenience, an
operator Ô1 ⊗ Î2 that acts nontrivially only on oscillator 1 will be denoted as
simply Ô1, with the identity operator Î2 acting on oscillator 2 left implicit.
Similarly, an operator Î1 ⊗ Ô2 that acts nontrivially only on oscillator 2 will be
denoted as simply Ô2, with the identity operator Î1 acting on oscillator 1 left
implicit. Obviously, any operator acting only on oscillator 1 commutes with any
operator acting only on oscillator 2.

The annihilation and creation operators for oscillator 1 are â1 and â†1, sat-
isfying [â1, a

†
1] = 1, and the annihilation and creation operators for oscillator 2

are â2 and â†2, satisfying [â2, a
†
2] = 1. As usual, the corresponding dimensionless

position and momentum operator acting on oscillators 1 and 2 are

ξ̂1 = 1√
2

(
â1 + â†1

)
, p̂ξ1 =

−i√
2

(
â1 − â†1

)
,

ξ̂2 = 1√
2

(
â2 + â†2

)
, p̂ξ2 =

−i√
2

(
â2 − â†2

)
.

A two-mode squeezed state of the two oscillators can be expressed as

|ψγ〉 = Nγ exp
(
γ â†1 ⊗ â†2

)
|0〉1 ⊗ |0〉2 ,

where γ is a real number such that γ2 < 1, |0〉1 is the ground state of oscillator
1, |0〉2 is the ground state of the oscillator 2, and Nγ is a normalization factor
chosen to ensure that 〈ψγ |ψγ〉 = 1.

(a) 5 points) Show that |ψγ〉 can be expressed in the form

|ψγ〉 = Nγ

∞∑
n=0

Cn |n〉1 ⊗ |n〉2,

where |n〉1 is the eigenstate with eigenvalue n of â†1â1, and |n〉2 is the
eigenstate with eigenvalue n of â†2â2. Find Cn, and determine the value
of Nγ .
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Expanding the exponential:

|ψγ〉 = Nγ

∞∑
n=0

γn

n!

(
â†1

)n

|0〉1 ⊗
(
â†2

)n

|0〉2 = Nγ

∞∑
n=0

γn|n〉1 ⊗ |n〉2.

Therefore Cn = γn, and

1 = N2
γ

∞∑
n=0

γ2n =
N2

γ

1− γ2
→ Nγ =

√
1− γ2.

(b) (5 points) The expectation value of an operator Ô1 that acts nontrivially
only on oscillator 1 can be expressed as

〈ψγ |Ô1 ⊗ Î2|ψγ〉 = tr
(
Ô1ρ̂

(1)
)
,

where ρ̂(1) is the density operator for oscillator 1. Similarly, the expecta-
tion value of an operator Ô2 that acts nontrivially only on oscillator 2 can
be expressed as

〈ψγ |Î1 ⊗ Ô2|ψγ〉 = tr
(
Ô2ρ̂

(2)
)
.

In fact, in this case both oscillators have the same density operator, which
can be expressed as

ρ̂(1) = ρ̂(2) =
∑

n

ρn|n〉〈n| .

Find {ρn}.

We note that

〈ψγ |Ô1 ⊗ Î2|ψγ〉 =
∞∑

n=0

N2
γγ

2n〈n|Ô1|n〉.

Therefore,
ρn = N2

γγ
2n =

(
1− γ2

)
γ2n.

(c) (10 points) Using ρ̂(1) from part (b), check that

〈ψγ |ξ̂1|ψγ〉 = 0 = 〈ψγ |p̂ξ1 |ψγ〉 ,

and compute
〈ψγ |ξ̂21 |ψγ〉, 〈ψγ |p̂2

ξ1
|ψγ〉.

Of course, since ρ̂(2) = ρ̂(1), we get the same values for the expectation val-
ues of position and momentum, and their squares, for oscillator 2. Hint:
It may be useful to notice that

∞∑
n=0

nγ2n = γ2 d

dγ2

∞∑
n=0

γ2n = γ2 d

dγ2

(
1− γ2

)−1
=

γ2

(1− γ2)2
.
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We have 〈n|â|n〉 = 0 = 〈n|â†|n〉, and therefore 〈n|ξ̂|n〉 = 0 = 〈n|p̂ξ|n〉.
Thus

〈ψγ |ξ̂1|ψγ〉 =
∑

n

ρn〈n|ξ̂1|n〉 = 0,

and
〈ψγ |p̂ξ1 |ψγ〉 =

∑
n

ρn〈n|p̂ξ1 |n〉 = 0.

Furthermore,

〈n|ξ̂2|n〉 =
1
2
〈n|ââ+ ââ† + â†â+ â†â†|n〉

=
1
2
〈n|[â, â†] + 2â†â|n〉 = n+

1
2
,

and

〈n|p̂2
ξ |n〉 = −1

2
〈n|ââ− ââ† − â†â+ â†â†|n〉

=
1
2
〈n|[â, â†] + 2â†â|n〉 = n+

1
2
,

Therefore,

〈ψγ |ξ̂21 |ψγ〉 =
∑

n

ρn〈n|ξ21 |n〉 =
(
1− γ2

)∑
n

γ2n

(
n+

1
2

)
=

1
2

+
γ2

1− γ2
=

1
2

(
1 + γ2

1− γ2

)
.

The computation of 〈ψγ |p̂2
ξ1
|ψγ〉 is identical, and yields

〈ψγ |p̂2
ξ1
|ψγ〉 =

1
2

(
1 + γ2

1− γ2

)
.

(d) (10 points) Compute the expectation value

〈ψγ |â1 ⊗ â2 + â†1 ⊗ â†2|ψγ〉 .

Since you are now evaluating the expectation value of an operator that
acts nontrivially on both oscillator 1 and oscillator 2, you’ll need to use
the expression for the joint state |ψγ〉 from part (a), rather than the density
operators for the individual oscillators.

Since â|n〉 =
√
n|n− 1〉, we have

(â1 ⊗ â2) |n〉1 ⊗ |n〉2 = n (|n− 1〉1 ⊗ |n− 1〉) .
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Therefore,

〈ψγ |â1 ⊗ â2|ψγ〉 =
(
1− γ2

)∑
n

(〈n− 1| ⊗ 〈n− 1|) γn−1nγn (|n− 1〉 ⊗ |n− 1〉)

=
(
1− γ2

)∑
n

nγ2n−1 =
(
1− γ2

)
γ−1 γ2

(1− γ2)2
=

γ

1− γ2
.

And 〈ψγ |â†1 ⊗ â†2|ψγ〉 is just the complex conjugate of the above, so

〈ψγ |â1 ⊗ â2 + â†1 ⊗ â†2|ψγ〉 =
2γ

1− γ2
.

(e) (5 points) Using the notation

ξ̂± = ξ̂1 ± ξ̂2 , p̂ξ± = p̂ξ1 ± p̂ξ2 ,

combine your results from (c) and (d) to evaluate the four expectation
values

∆ξ2± = 〈ψγ |ξ̂2±|ψγ〉 , ∆p2
ξ± = 〈ψγ |p̂2

ξ± |ψγ〉 .

We have

ξ̂2± = ξ̂21 ± 2ξ̂1ξ̂2 + ξ̂22 , p̂2
ξ± = p2

ξ1
± 2p̂ξ1 p̂ξ2 + p2

ξ2
,

and we already know that

〈ξ̂21〉 = 〈ξ̂22〉 = 〈p̂2
ξ1
〉 = 〈p̂2

ξ2
〉 =

1
2

(
1 + γ2

1− γ2

)
;

It remains to evaluate the expectation values of the cross terms. But

2ξ̂1ξ̂2 = â1 ⊗ â2 + â1 ⊗ â†2 + â†1 ⊗ â2 + â†1 ⊗ â†2 ,

2p̂ξ1 p̂ξ2 = −â1 ⊗ â2 + â1 ⊗ â†2 + â†1 ⊗ â2 − â†1 ⊗ â†2 ,

while
〈â1 ⊗ â†2〉 = 〈â†1 ⊗ â2〉 = 0 .

Therefore, by combining (c) and (d) we have

〈ξ̂2+〉 = 〈p̂2
ξ−〉 =

1 + γ2

1− γ2
+

2γ
1− γ2

=
(1 + γ)2

1− γ2
=

1 + γ

1− γ
,

〈ξ̂2−〉 = 〈p̂2
ξ+
〉 =

1 + γ2

1− γ2
− 2γ

1− γ2
=

(1− γ)2

1− γ2
=

1− γ

1 + γ
.
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If your calculations are correct up to this point, you should have found that,
in the limit γ → 1, ∆ξ+ and ∆pξ− diverge while ∆ξ− and ∆pξ+ approach
zero. (If that is not the case, check your work.) Therefore, in this limit, the
two oscillators have the same position and opposite momentum. It is possible
for both the relative position and the total momentum to have arbitrarily small
uncertainty, because ξ̂− and p̂ξ+ are commuting observables. Conversely, in
the limit γ → −1, ∆ξ− and ∆pξ+ diverge while ∆ξ+ and ∆pξ− approach zero.
Again, this is possible because ξ̂+ and p̂ξ− commute.

(f) (5 points) What are the minimum values of the products ∆ξ+ · ∆pξ+

and ∆ξ− · ∆pξ− allowed by the uncertainty principle? Verify that these
minimum values are attained by |ψγ〉 for any γ ∈ (−1, 1).

From (e) we have

∆ξ+ ·∆pξ+ = ∆ξ− ·∆pξ− = 1 ,

while the commutators are[
ξ̂+, p̂ξ+

]
=
[
ξ̂1, p̂ξ1

]
+
[
ξ̂2, p̂ξ2

]
= 2i =

[
ξ̂−, p̂ξ−

]
.

According to the uncertainty principle

∆ξ+ ·∆pξ+ ≤
1
2

∣∣∣〈[ξ̂+, p̂ξ+

]〉∣∣∣ = 1 ;

same thing for ∆ξ− ·∆pξ− .
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