
Ph 12b Final Exam

Due: Wednesday, 17 March 2010, 5pm

• This exam is to be taken in one continuous time interval not to exceed 4

hours, beginning when you first open the exam.

• You may consult the textbook Introductory Quantum Mechanics by Liboff,
the textbook Introduction to Quantum Mechanics by Griffiths, your lec-
ture notes, the online lecture notes, and the problem sets and solutions. If
you wish, you may use a calculator, computer, or integral table for doing
calculations. No other materials or persons are to be consulted.

• There are three problems, each with multiple parts, and 100 possible points;
the value of each problem is indicated. You are to work all of the problems.

• The completed exam is to be handed in at the Ph 12 in-box outside 264
Lauritsen. All exams are due at 5pm on Wednesday, March 17. No late

exams will be accepted.

• Good luck!

1



1. Bound states of two narrow wells — 30 total points

A particle with mass m moves in one dimension, governed by the potential

V (x) =
−h̄2∆

m
(δ(x+ a) + δ(x− a)) ,

where δ(x) denotes the Dirac δ-function, and ∆ > 0. Recall that the δ-function
potential V (x) = −(h̄2∆/m)δ(x − a) causes the logarithmic derivative of the
wave function ϕ(x) to jump discontinuously at x = a:

ϕ′(a+) − ϕ′(a−) = −(2∆)ϕ(a) .

(a) (5 points) For ∆a sufficiently large, this potential has two bound states.
Sketch the wave functions ϕ0(x) and ϕ1(x) of the ground state and first
excited state. Hint: Be sure that each bound-state wave function has the
right number of nodes and the right symmetry.

(b) (5 points) A normalizable even solution to the time-independent Schrödinger
equation can be expressed as

ϕ(x) = e−κx , x > a ,

ϕ(x) = A
(

eκx + e−κx
)

, −a < x < a

ϕ(x) = eκx , x < −a ,
for some real numberA, where κ is related to the energy byE = −h̄2κ2/2m.
Use the appropriate matching conditions at x = a to derive a transcen-
dental equation that implicitly determines κa (and hence E) in terms of
∆a. Express your equation in the form

∆a = f(κa)

for some function f .

(c) (5 points) For your solution in (c), how are κ and ∆ related in the limit
a → 0 ? Hint: In this limit, the two δ-functions coincide, so your result
should agree with what you expect for a single δ-function with twice the
strength.

(d) (5 points) A normalizable odd solution to the time-independent Schrödinger
equation can be expressed as

ϕ(x) = e−κx , x > a ,

ϕ(x) = A
(

eκx − e−κx
)

, −a < x < a

ϕ(x) = −eκx , x < −a .
Use the appropriate matching conditions at x = a to derive a transcen-
dental equation that implicitly determines κa (and hence E) in terms of
∆a. Express your equation in the form

∆a = g(κa)

for some function g.
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(e) (5 points) In the limit a → 0 considered in (c), the two delta functions
merge to one, and there is only one bound state. Thus there is a second
bound state only for sufficiently large ∆a. Find the value (∆a)1 such that
a second bound state exists if and only if ∆a > (∆a)1. Hint: Under what
condition does the equation found in (d) have a solution with κ > 0? It
may be useful to note that the function x(1 + coth(x)) is monotonically
increasing for x ∈ [0,∞].

(f) (5 points) Now consider the limit ∆a≫ 1; show that the splitting between
the energy E0 of the ground state and the energy E1 of the first excited
state has the form

E1 − E0 = C
h̄2∆2

2m

(

e−2∆a +O(e−4∆a)
)

,

and find the constant C. Hint: Use the approximations

tanhx ≡ ex − e−x

ex + e−x
= 1 − 2e−2x +O(e−4x) ,

cothx ≡ ex + e−x

ex − e−x
= 1 + 2e−2x +O(e−4x) ,

and note that the equation

B = x
(

1 ∓ e−2x
)

has the approximate solution

x = B
(

1 ± e−2B +O(e−4B)
)

for B ≫ 1.

2. Variational method — 30 total points

The variational method is a technique for estimating the ground state energy
E0 of a Hamiltonian Ĥ . We choose a family of states, and then find the one in
the family that makes 〈Ĥ〉 as small as possible. The minimal value of 〈Ĥ〉 is
our estimate of E0. We can also use a variant of this method to estimate the
energy E1 of the first excited state.

(a) (5 points) Show that for any normalized state |ψ〉,

〈ψ|Ĥ |ψ〉 ≥ E0 .

Hint: Expand the state |ψ〉 as a sum over Ĥ eigenstates.

(b) (5 points) Consider a Hamiltonian Ĥ = p̂2/2m+ V (x̂) for a particle in
one dimension, where V is an even function. If this potential has at least
two bound states, then the ground state wave function ψ0(x) is an even
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function of x, and the first-excited-state wave function ψ1(x) is an odd
function of x. Noting that 〈ϕ|ψ〉 = 0 where ψ(x) is any even function of
x and ϕ(x) is any odd function of x, show that for any normalized odd
wave function ϕ(x),

〈ϕ|Ĥ|ϕ〉 ≥ E1 .

Now consider the one-dimensional Hamiltonian

Ĥ =
1

2m
p̂2 + F |x̂| ,

where |x̂| denotes the absolute value of x̂. As you know from a homework
problem, the ground-state energy E0 and first-excited-state energy E1 for this
Hamiltonian are

E0 ≈ 1.0188

(

h̄2F 2

2m

)1/3

, E1 ≈ 2.3381

(

h̄2F 2

2m

)1/3

.

We will use the variational method to estimate E0 and E1 for this Hamiltonian.
For estimating E0, we use the family of normalized even wave functions {|ψa〉},
where

ψa(x) =
1

π1/4a1/2
e−x2/2a2

,

and for estimating E1, we use the family of normalized odd wave functions
{|ϕa〉}, where

ϕa(x) =

√
2

π1/4a3/2
x e−x2/2a2

.

The following integrals may be useful for working this problem:

∫ ∞

−∞
dx e−x2

=
√
π ,

∫ ∞

−∞
dx x2e−x2

=

√
π

2
,

∫ ∞

−∞
dx x4e−x2

=
3
√
π

4
,

∫ ∞

−∞
dx |x|e−x2

=

∫ ∞

−∞
dx |x|3e−x2

= 1 .

(c) (5 points) Compute 〈ψa|Ĥ|ψa〉 as a function of a.

(d) (5 points) Estimate E0 by minimizing the function found in (c). (If done
correctly, this calculation overestimates the value of E0 by less than 1%.)

(e) (5 points) Compute 〈ϕa|Ĥ |ϕa〉 as a function of a.

(f) (5 points) Estimate E1 by minimizing the function found in (e). (If done
correctly, this calculation overestimates the value of E1 by less than 1%.)
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3. Two correlated oscillators — 40 total points

Consider a system of two harmonic oscillators, labeled 1 and 2. The Hilbert
space of the system is H = H1 ⊗H2, where H1 is the Hilbert space of oscillator
1 and H2 is the Hilbert space of oscillator 2. For notational convenience, an
operator Ô1 ⊗ Î2 that acts nontrivially only on oscillator 1 will be denoted as
simply Ô1, with the identity operator Î2 acting on oscillator 2 left implicit.
Similarly, an operator Î1 ⊗ Ô2 that acts nontrivially only on oscillator 2 will be
denoted as simply Ô2, with the identity operator Î1 acting on oscillator 1 left
implicit. Obviously, any operator acting only on oscillator 1 commutes with any
operator acting only on oscillator 2.

The annihilation and creation operators for oscillator 1 are â1 and â†1, sat-

isfying [â1, a
†
1] = 1, and the annihilation and creation operators for oscillator 2

are â2 and â†2, satisfying [â2, a
†
2] = 1. As usual, the corresponding dimensionless

position and momentum operator acting on oscillators 1 and 2 are

ξ̂1 = 1√
2

(

â1 + â†1

)

, p̂ξ1
=

−i√
2

(

â1 − â†1

)

,

ξ̂2 = 1√
2

(

â2 + â†2

)

, p̂ξ2
=

−i√
2

(

â2 − â†2

)

.

A two-mode squeezed state of the two oscillators can be expressed as

|ψγ〉 = Nγ exp
(

γ â†1 ⊗ â†2

)

|0〉1 ⊗ |0〉2 ,

where γ is a real number such that γ2 < 1, |0〉1 is the ground state of oscillator
1, |0〉2 is the ground state of the oscillator 2, and Nγ is a normalization factor
chosen to ensure that 〈ψγ |ψγ〉 = 1.

(a) (5 points) Show that |ψγ〉 can be expressed in the form

|ψγ〉 = Nγ

∞
∑

n=0

Cn |n〉1 ⊗ |n〉2,

where |n〉1 is the eigenstate with eigenvalue n of â†1â1, and |n〉2 is the

eigenstate with eigenvalue n of â†2â2. Find Cn, and determine the value
of Nγ .

(b) (5 points) The expectation value of an operator Ô1 that acts nontrivially
only on oscillator 1 can be expressed as

〈ψγ |Ô1 ⊗ Î2|ψγ〉 = tr
(

Ô1ρ̂
(1)

)

,

where ρ̂(1) is the density operator for oscillator 1. Similarly, the expecta-
tion value of an operator Ô2 that acts nontrivially only on oscillator 2 can
be expressed as

〈ψγ |Î1 ⊗ Ô2|ψγ〉 = tr
(

Ô2ρ̂
(2)

)

.
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In fact, in this case both oscillators have the same density operator, which
can be expressed as

ρ̂(1) = ρ̂(2) =
∑

n

ρn|n〉〈n| .

Find {ρn}.

(c) (10 points) Using ρ̂(1) from part (b), check that

〈ψγ |ξ̂1|ψγ〉 = 0 = 〈ψγ |p̂ξ1
|ψγ〉 ,

and compute
〈ψγ |ξ̂21 |ψγ〉, 〈ψγ |p̂2

ξ1
|ψγ〉.

Of course, since ρ̂(2) = ρ̂(1), we get the same values for the expectation val-
ues of position and momentum, and their squares, for oscillator 2. Hint:
It may be useful to notice that

∞
∑

n=0

nγ2n = γ2 d

dγ2

∞
∑

n=0

γ2n = γ2 d

dγ2

(

1 − γ2
)−1

=
γ2

(1 − γ2)
2
.

(d) (10 points) Compute the expectation value

〈ψγ |â1 ⊗ â2 + â†1 ⊗ â†2|ψγ〉 .
Since you are now evaluating the expectation value of an operator that
acts nontrivially on both oscillator 1 and oscillator 2, you’ll need to use the
expression for the joint state |ψγ〉 from part (a), rather than the density
operators for the individual oscillators.

(e) (5 points) Using the notation

ξ̂± = ξ̂1 ± ξ̂2 , p̂ξ± = p̂ξ1
± p̂ξ2

,

combine your results from (c) and (d) to evaluate the four expectation
values

∆ξ2± = 〈ψγ |ξ̂2±|ψγ〉 , ∆p2
ξ±

= 〈ψγ |p̂2
ξ±
|ψγ〉 .

If your calculations are correct up to this point, you should have found that, in
the limit γ → 1, ∆ξ+ and ∆pξ− diverge while ∆ξ− and ∆pξ+

approach zero.
(If that is not the case, check your work.) Therefore, in this limit, the two
oscillators have the same position and opposite momentum. It is possible for
both the relative position and the total momentum to have arbitrarily small
uncertainty, because ξ̂− and p̂ξ+

are commuting observables. Conversely, in
the limit γ → −1, ∆ξ− and ∆pξ+

diverge while ∆ξ+ and ∆pξ− approach zero.

Again, this is possible because ξ̂+ and p̂ξ− commute.

(f) (5 points) What are the minimum values of the products ∆ξ+ · ∆pξ+

and ∆ξ− · ∆pξ− allowed by the uncertainty principle? Verify that these
minimum values are attained by |ψγ〉 for any γ ∈ (−1, 1).
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