Ph 12b

Homework Assignment No. 1 Due: 5pm, Thursday, 14 January 2010

1. Uncertainty principle and the quantum harmonic oscillator. For any quantum state of a single particle moving in one dimension, there is a corresponding probability density P(x) that governs the possible outcomes when the position of the particle is measured. P(x) is a nonnegative function normalized so that

$$\int_{-\infty}^{\infty} dx \ P(x) = 1,$$

and the expectation value $\langle f \rangle$ of the function f(x) is

$$\langle f \rangle = \int_{-\infty}^{\infty} dx \ P(x) f(x)$$

The standard deviation Δx of the position from its mean, defined as

$$(\Delta x)^2 = \langle (x - \langle x \rangle)^2 \rangle,$$

is called the position *uncertainty*. Similarly, another probability density Q(p) associated with the same quantum state governs the outcomes when the momentum of the particle is measured; we may use Q(p) to compute expectation values of functions of p, and Δp , the standard deviation of the momentum from its mean, is the momentum uncertainty. The position and momentum uncertainties are related by Heisenberg's uncertainty principle,

$$\Delta x \Delta p \ge \hbar/2.$$

a) The energy E of a harmonic oscillator with mass m and circular frequency ω can be expressed as

$$E = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2.$$

For a quantum state of the oscillator with position uncertainty Δx and $\langle x \rangle = 0 = \langle p \rangle$, use the uncertainty principle to find a lower bound on $\langle E \rangle$, expressed in terms of Δx .

- b) Now find the value of Δx that minimizes your lower bound from part (a), and derive a lower bound on $\langle E \rangle$ that applies to any quantum state. As you will learn later in this course, the groundstate energy of a one-dimensional harmonic oscillator is $E_0 = \hbar \omega/2$. Compare this value to your lower bound.
- 2. Uncertainty principle and the standard quantum limit for position measurement. Suppose that the position of a free particle in one dimension is measured at time zero, then measured once again at time t. A particle with momentum p has velocity v = p/m; therefore the particle position x_t right before the second measurement is related to the particle position x_0 and momentum p_0 right after the first measurement by

$$x_t = x_0 + p_0 t/m.$$

a) Suppose that the quantum state right after the first position has position uncertainty Δx_0 , and consider Δx_t , the standard deviation from its mean of x_t evaluated using this quantum state. Invoke the uncertainty principle to obtain a lower bound on Δx_t expressed in terms of Δx_0 . In your derivation, assume that the position and momentum of the particle are "uncorrelated" right after the first measurement, so that

$$\langle (x_0 - \langle x_0 \rangle) (p_0 - \langle p_0 \rangle) \rangle + \langle (p_0 - \langle p_0 \rangle) (x_0 - \langle x_0 \rangle) \rangle = 0.$$

b) What value of Δx_0 minimizes your lower bound on

$$\Delta x_0 \Delta x_t?$$

Find a lower bound on $\Delta x_0 \Delta x_t$ that applies for any value of Δx_0 . The square root of your result is called the *standard quantum limit* on repeated position measurement for a free mass.

c) At the Laser Interferometer Gravitational-Wave Observatory (LIGO), repeated measurements separated by time interval $t = 10^{-2}$ have been performed for a 10 kg free mass, with sensitivity less than a factor of 10 above the standard quantum limit. In meters, what is this standard quantum limit? Compare to the size of a proton.

(Wow!) In about five years, Advanced LIGO is expected to achieve a sensitivity 10 times better for a mass 4 times heavier.

3. Old quantum theory and the harmonic oscillator.

a) The Hamiltonian of a one-dimensional harmonic oscillator is

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

What are Hamilton's equations of motion for this system?

- b) The energy E of the oscillator is a constant of the motion, and the condition H = E determines a closed elliptical orbit in phase space (*i.e.*, the x-p plane). Sketch the orbits for several different value of the energy E, indicating the direction of flow along the orbit determined by Hamilton's equations.
- c) For a closed orbit in the two-dimensional x-p phase space, the *action J* is defined as the area enclosed by the orbit. Compute J(E) for the harmonic oscillator with energy E. (Recall that the area A of an ellipse with semi-major axis a and semi-minor axis b is $A = \pi ab$.)
- d) A theorem of classical mechanics asserts that for periodic motion in one dimension, the action is related to the period T of the motion by

$$T = \partial J / \partial E.$$

Verify this relation for the harmonic oscillator.

e) According to the "old quantum theory" a one-dimensional periodic system has a discrete set of allowed energy levels $\{E_n\}$, determined by the requirement that the action J is an integer multiple of Planck's constant $h = 2\pi\hbar$:

$$I(E_n) = nh, \quad n = 0, 1, 2, 3, \dots$$

(For this reason, some older books refer to h as the "quantum of action.") Use this rule to find the energy levels of the harmonic oscillator.

4. Poisson brackets. Consider a Hamiltonian system with coordinates $\{q_a, a = 1, 2, ..., N\}$ and conjugate momenta $\{p_a, a = 1, 2, ..., N\}$, and let $A(q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)$ and $B(q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)$ be functions of these variables. The *Poisson bracket* [A, B] of A and B is defined as

$$[A,B] = \sum_{a=1}^{N} \left(\frac{\partial A}{\partial q_a} \frac{\partial B}{\partial p_a} - \frac{\partial B}{\partial q_a} \frac{\partial A}{\partial p_a} \right)$$

a) Use Hamilton's equations to show that

$$\frac{d}{dt}A = [A, H],$$

where H is the Hamiltonian.

- b) If B = B(A) is a function of A, show that [A, B] = 0
- c) Use the Poisson bracket to show that, if the Hamiltonian H has no explicit dependence on time (and hence is a function of only the phase space variables), then dH/dt = 0 (*i.e.*, energy is conserved).
- b) Evaluate the Poisson brackets

$$[q_a,q_b], \quad [p_a,p_b], \quad [q_a,p_b],$$

for $a, b = 1, 2, 3, \dots N$.

- 5. Single-photon interference. Consider an idealized version of a doubleslit interference experiment, in which a single photon can pass through either one of two slits in a screen, labeled A and B, and can be detected behind the screen by either one of two detectors, labeled C and D. If the photon passes through slit A, then the amplitude for the photon to arrive at detector C is $\psi_A(C) = e^{i(\alpha+\phi)}/\sqrt{2}$ and the amplitude for the photon to arrive at detector D is $\psi_A(D) = e^{i(\alpha-\phi)}/\sqrt{2}$, while if the photon passes through slit B, the amplitude for arrival at detector C is $\psi_B(C) = e^{i(\beta+\phi)}/\sqrt{2}$ and the amplitude for arrival at detector D is $\psi_B(D) = -e^{i(\beta-\phi)}/\sqrt{2}$.
 - a) Consider the case where the photon is equally likely to pass through the two slits: the amplitude for arrival at C is $(\psi_A(C) + \psi_B(C))/\sqrt{2}$ and the amplitude for arrival at D is $(\psi_A(D) + \psi_B(D))/\sqrt{2}$. What is the probability P(C) that C detects the photon and the probability P(D) that D detects the photon. (Recall that the probability is the modulus squared of the amplitude.)
 - b) What are P(C) and P(D) when slit B is covered so that the photon must pass through slit A? What if A is covered so the photon must pass through B?
 - c) Suppose that both slits are open, but a phase shifter is placed in front of slit A, which advances α by π . What effect does the phase shifter have on P(C) and P(D)?