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Ph 12b

Homework Assignment No. 1

Due: 5pm, Thursday, 14 January 2010

1. Uncertainty principle and the quantum harmonic oscillator. For
any quantum state of a single particle moving in one dimension, there

is a corresponding probability density P (x) that governs the possible
outcomes when the position of the particle is measured. P (x) is a

nonnegative function normalized so that

∫

∞

−∞

dx P (x) = 1,

and the expectation value 〈f〉 of the function f(x) is

〈f〉 =

∫

∞

−∞

dx P (x)f(x).

The standard deviation ∆x of the position from its mean, defined as

(∆x)2 = 〈(x− 〈x〉)2〉,

is called the position uncertainty. Similarly, another probability den-
sity Q(p) associated with the same quantum state governs the out-

comes when the momentum of the particle is measured; we may use
Q(p) to compute expectation values of functions of p, and ∆p, the

standard deviation of the momentum from its mean, is the momentum
uncertainty. The position and momentum uncertainties are related by
Heisenberg’s uncertainty principle,

∆x∆p ≥ h̄/2.

a) The energy E of a harmonic oscillator with mass m and circular
frequency ω can be expressed as

E =
p2

2m
+

1

2
mω2x2.

For a quantum state of the oscillator with position uncertainty

∆x and 〈x〉 = 0 = 〈p〉, use the uncertainty principle to find a
lower bound on 〈E〉, expressed in terms of ∆x.
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b) Now find the value of ∆x that minimizes your lower bound from

part (a), and derive a lower bound on 〈E〉 that applies to any
quantum state. As you will learn later in this course, the ground-

state energy of a one-dimensional harmonic oscillator is E0 =
h̄ω/2. Compare this value to your lower bound.

2. Uncertainty principle and the standard quantum limit for po-
sition measurement. Suppose that the position of a free particle
in one dimension is measured at time zero, then measured once again

at time t. A particle with momentum p has velocity v = p/m; there-
fore the particle position xt right before the second measurement is

related to the particle position x0 and momentum p0 right after the
first measurement by

xt = x0 + p0t/m.

a) Suppose that the quantum state right after the first position has
position uncertainty ∆x0, and consider ∆xt, the standard devi-
ation from its mean of xt evaluated using this quantum state.

Invoke the uncertainty principle to obtain a lower bound on ∆xt

expressed in terms of ∆x0. In your derivation, assume that the

position and momentum of the particle are “uncorrelated” right
after the first measurement, so that

〈 (x0 − 〈x0〉) (p0 − 〈p0〉) 〉 + 〈 (p0 − 〈p0〉) (x0 − 〈x0〉) 〉 = 0.

b) What value of ∆x0 minimizes your lower bound on

∆x0∆xt?

Find a lower bound on ∆x0∆xt that applies for any value of ∆x0.
The square root of your result is called the standard quantum limit

on repeated position measurement for a free mass.

c) At the Laser Interferometer Gravitational-WaveObservatory (LIGO),
repeated measurements separated by time interval t = 10−2 have

been performed for a 10 kg free mass, with sensitivity less than a
factor of 10 above the standard quantum limit. In meters, what

is this standard quantum limit? Compare to the size of a proton.

(Wow!) In about five years, Advanced LIGO is expected to achieve a
sensitivity 10 times better for a mass 4 times heavier.
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3. Old quantum theory and the harmonic oscillator.

a) The Hamiltonian of a one-dimensional harmonic oscillator is

H =
p2

2m
+

1

2
mω2x2.

What are Hamilton’s equations of motion for this system?

b) The energy E of the oscillator is a constant of the motion, and

the condition H = E determines a closed elliptical orbit in phase
space (i.e., the x−p plane). Sketch the orbits for several different

value of the energy E, indicating the direction of flow along the
orbit determined by Hamilton’s equations.

c) For a closed orbit in the two-dimensional x−p phase space, the
action J is defined as the area enclosed by the orbit. Compute

J(E) for the harmonic oscillator with energy E. (Recall that the
area A of an ellipse with semi-major axis a and semi-minor axis

b is A = πab.)

d) A theorem of classical mechanics asserts that for periodic motion
in one dimension, the action is related to the period T of the

motion by
T = ∂J/∂E.

Verify this relation for the harmonic oscillator.

e) According to the “old quantum theory” a one-dimensional periodic
system has a discrete set of allowed energy levels {En}, deter-

mined by the requirement that the action J is an integer multiple
of Planck’s constant h = 2πh̄:

J(En) = nh, n = 0, 1, 2, 3, . . . .

(For this reason, some older books refer to h as the “quantum of

action.”) Use this rule to find the energy levels of the harmonic
oscillator.

4. Poisson brackets. Consider a Hamiltonian system with coordinates

{qa, a = 1, 2, . . . , N} and conjugate momenta {pa, a = 1, 2, . . . , N},
and let A(q1, q2, . . . , qN , p1, p2, . . . , pN) and B(q1, q2, . . . , qN , p1, p2, . . . , pN)

be functions of these variables. The Poisson bracket [A,B] of A and
B is defined as

[A,B] =
N

∑

a=1

(

∂A

∂qa

∂B

∂pa
− ∂B

∂qa

∂A

∂pa

)
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a) Use Hamilton’s equations to show that

d

dt
A = [A,H ],

where H is the Hamiltonian.

b) If B = B(A) is a function of A, show that [A,B] = 0

c) Use the Poisson bracket to show that, if the Hamiltonian H has no
explicit dependence on time (and hence is a function of only the

phase space variables), then dH/dt = 0 (i.e., energy is conserved).

b) Evaluate the Poisson brackets

[qa, qb], [pa, pb], [qa, pb],

for a, b = 1, 2, 3, . . .N .

5. Single-photon interference. Consider an idealized version of a double-
slit interference experiment, in which a single photon can pass through

either one of two slits in a screen, labeled A and B, and can be detected
behind the screen by either one of two detectors, labeled C and D. If
the photon passes through slit A, then the amplitude for the photon

to arrive at detector C is ψA(C) = ei(α+φ)/
√

2 and the amplitude for
the photon to arrive at detector D is ψA(D) = ei(α−φ)/

√
2, while if

the photon passes through slit B, the amplitude for arrival at detector
C is ψB(C) = ei(β+φ)/

√
2 and the amplitude for arrival at detector D

is ψB(D) = −ei(β−φ)/
√

2.

a) Consider the case where the photon is equally likely to pass through
the two slits: the amplitude for arrival at C is (ψA(C) + ψB(C)) /

√
2

and the amplitude for arrival at D is (ψA(D) + ψB(D)) /
√

2.

What is the probability P (C) that C detects the photon and
the probability P (D) that D detects the photon. (Recall that

the probability is the modulus squared of the amplitude.)

b) What are P (C) and P (D) when slitB is covered so that the photon
must pass through slit A? What if A is covered so the photon

must pass through B?

c) Suppose that both slits are open, but a phase shifter is placed in
front of slit A, which advances α by π. What effect does the

phase shifter have on P (C) and P (D)?


