Ph 12b

Homework Assignment No. 1
Due: 5pm, Thursday, 14 January 2010

1. Uncertainty principle and the quantum harmonic oscillator. For
any quantum state of a single particle moving in one dimension, there
is a corresponding probability density P(x) that governs the possible
outcomes when the position of the particle is measured. P(z) is a
nonnegative function normalized so that

/_O:Odm P(x) =1,

and the expectation value (f) of the function f(x) is

()= do P@)f(@)
The standard deviation Az of the position from its mean, defined as

(A2)* = ((z — (2))%),

is called the position uncertainty. Similarly, another probability den-
sity Q(p) associated with the same quantum state governs the out-
comes when the momentum of the particle is measured; we may use
Q(p) to compute expectation values of functions of p, and Ap, the
standard deviation of the momentum from its mean, is the momentum
uncertainty. The position and momentum uncertainties are related by
Heisenberg’s uncertainty principle,

AzAp > h/2.

a) The energy E of a harmonic oscillator with mass m and circular
frequency w can be expressed as
2
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For a quantum state of the oscillator with position uncertainty
Az and (z) = 0 = (p), use the uncertainty principle to find a
lower bound on (E), expressed in terms of Azx.



b) Now find the value of Az that minimizes your lower bound from
part (a), and derive a lower bound on (F) that applies to any
quantum state. As you will learn later in this course, the ground-
state energy of a one-dimensional harmonic oscillator is Ey =
hw/2. Compare this value to your lower bound.

2. Uncertainty principle and the standard quantum limit for po-
sition measurement. Suppose that the position of a free particle
in one dimension is measured at time zero, then measured once again
at time ¢t. A particle with momentum p has velocity v = p/m; there-
fore the particle position z; right before the second measurement is
related to the particle position xy and momentum pg right after the
first measurement by

xy = xo + pot/m.

a) Suppose that the quantum state right after the first position has
position uncertainty Axg, and consider Ax;, the standard devi-
ation from its mean of x; evaluated using this quantum state.
Invoke the uncertainty principle to obtain a lower bound on Axy
expressed in terms of Axg. In your derivation, assume that the
position and momentum of the particle are “uncorrelated” right
after the first measurement, so that

((zo = (z0)) (Po — (P0)) ) + ((po — (po)) (x0 — (w0))) = 0.

b) What value of Azy minimizes your lower bound on
AxgAxs?

Find a lower bound on AzgAx; that applies for any value of Azy.
The square root of your result is called the standard quantum limit
on repeated position measurement for a free mass.

¢) At the Laser Interferometer Gravitational-Wave Observatory (LIGO),
repeated measurements separated by time interval ¢ = 1072 have
been performed for a 10 kg free mass, with sensitivity less than a
factor of 10 above the standard quantum limit. In meters, what
is this standard quantum limit? Compare to the size of a proton.

(Wow!) In about five years, Advanced LIGO is expected to achieve a
sensitivity 10 times better for a mass 4 times heavier.



3. Old quantum theory and the harmonic oscillator.

a) The Hamiltonian of a one-dimensional harmonic oscillator is
2
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What are Hamilton’s equations of motion for this system?

b) The energy E of the oscillator is a constant of the motion, and
the condition H = E determines a closed elliptical orbit in phase
space (i.e., the z—p plane). Sketch the orbits for several different
value of the energy F, indicating the direction of flow along the
orbit determined by Hamilton’s equations.

¢) For a closed orbit in the two-dimensional z—p phase space, the
action J is defined as the area enclosed by the orbit. Compute
J(E) for the harmonic oscillator with energy E. (Recall that the
area A of an ellipse with semi-major axis a and semi-minor axis
bis A = mab.)

d) A theorem of classical mechanics asserts that for periodic motion
in one dimension, the action is related to the period T of the

motion by
T =0J/0E.

Verify this relation for the harmonic oscillator.

e) According to the “old quantum theory” a one-dimensional periodic
system has a discrete set of allowed energy levels {E,}, deter-
mined by the requirement that the action J is an integer multiple
of Planck’s constant h = 27h:

J(E,) =nh, n=0,1,2,3,....

(For this reason, some older books refer to h as the “quantum of
action.”) Use this rule to find the energy levels of the harmonic
oscillator.

4. Poisson brackets. Consider a Hamiltonian system with coordinates
{qa,a = 1,2,..., N} and conjugate momenta {p,,a = 1,2,..., N},
andlet A(q1,q2,- -, qN, P1, P2, - - -, pN) and B(q1, g2, - - -, qN, P1, P2, - - -, PN)
be functions of these variables. The Poisson bracket [A, B] of A and
B is defined as

N
[A,B] =)

a=1
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a) Use Hamilton’s equations to show that

d
&A - [Av H]a

where H is the Hamiltonian.
b) If B = B(A) is a function of A, show that [4, B] =0

¢) Use the Poisson bracket to show that, if the Hamiltonian H has no
explicit dependence on time (and hence is a function of only the
phase space variables), then dH /dt = 0 (i.e., energy is conserved).

b) Evaluate the Poisson brackets

[qg,v Qb]v [pavpb]v [qg,vpb]v
fora,b=1,2,3,...N.

5. Single-photon interference. Consider an idealized version of a double-
slit interference experiment, in which a single photon can pass through
either one of two slits in a screen, labeled A and B, and can be detected
behind the screen by either one of two detectors, labeled C' and D. If
the photon passes through slit A, then the amplitude for the photon
to arrive at detector C' is ¥ 4(C) = €@+9) /\/2 and the amplitude for
the photon to arrive at detector D is 14(D) = €(@=%) /\/2 while if
the photon passes through slit B, the amplitude for arrival at detector
C is 9p(C) = €'+ /\/2 and the amplitude for arrival at detector D
is Yp(D) = —e0=9) /\/2.

a) Consider the case where the photon is equally likely to pass through
the two slits: the amplitude for arrival at C'is (¢ 4(C) + ¥5(C)) /v2
and the amplitude for arrival at D is (¥ 4(D) + (D)) /V2.
What is the probability P(C') that C detects the photon and
the probability P(D) that D detects the photon. (Recall that
the probability is the modulus squared of the amplitude.)

b) What are P(C') and P(D) when slit B is covered so that the photon
must pass through slit A7 What if A is covered so the photon
must pass through B?

¢) Suppose that both slits are open, but a phase shifter is placed in
front of slit A, which advances a by w. What effect does the
phase shifter have on P(C) and P(D)?



