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Ph 12b

Homework Assignment No. 3
Due: 5pm, Thursday, 28 January 2010

1. “A watched quantum state never moves.” Consider a simple model
of an atom with two energy levels — the ground state |g〉 has energy Eg

and the excited state |e〉 has energy Ee > Eg, where ω = (Ee−Eg)/h̄;
the Hamiltonian of this system is

Ĥ = Eg|g〉〈g|+ Ee|e〉〈e|.

An experimentalist is equipped to perform a measurement that projects
the state of the atom onto the orthonormal basis

|+〉 =
1√
2

(|g〉+ |e〉) , |−〉 =
1√
2

(|g〉 − |e〉) ,

and to prepare the atom in the state |+〉.

a) Suppose that the state |+〉 is prepared at time 0 and that the
measurement projecting onto {|+〉, |−〉} is performed at time t.

Find the probability Pt(+) of the + measurement outcome and
the probability Pt(−) of the − measurement outcome.

b) Suppose that the measurement projecting onto {|+〉, |−〉} is per-
formed twice in succession. The state |+〉 is prepared at time

0, the first measurement is performed at time t, and the second
measurement is performed at time 2t. Find the probability of

a + outcome and the probability of a − outcome in the second

measurement.

c) Now suppose that N measurements, equally spaced in time, are

performed in succession. The state |+〉 is prepared at time 0, the
first measurement is performed at time t, the second measurement

at time 2t, and so on, with the N th measurement performed at
time Nt. Find the probability P (+N ) that the + outcome occurs

in every one of the N measurements.

d) For the same situation as in part (c), denote the total elapsed time

by T = Nt, so that the time interval between the measurements
is t = T/N . Show that P (+N ) can be expressed as

P (+N ) = 1 − f(ωT )/N + O(1/N 2),
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and find the function f(ωT ). Thus, taking the limit N → ∞ with

ωT fixed, we conclude that if the atom is observed continuously
its state never evolves.

2. A better bomb test. The bomb-testing protocol explained in class
uses a beam splitter described by the unitary transformation

Û =
1√
2

(

1 −1
1 1

)

.

A single photon can enter the beam splitter through either port in1

or port in2 and can exit through either port out1 or port out2. If the
input state of the photon is vin = a|in1〉+ b|in2〉 and the output state

is vout = c|out1〉 + d|out2〉, then

vout =

(

c

d

)

= Ûvin =
1√
2

(

a− b

a+ b

)

,

An interferometer can be fashioned from two beam splitters and two

mirrors, where photon detectors are placed at the exit ports of the
second beam splitter, labeled exit1 and exit2. The state of a photon

that exits the interferometer, vexit = e|exit1〉 + f |exit2〉, is given by

vexit =

(

e

f

)

= Ûvout = Û2vin,

where

Û2 =

(

0 −1
1 0

)

.

Thus if the input state is |in1〉, then the output state is |exit2〉, and

the photon is detected at port exit2 with probability one.

In the bomb test, the mirror at port out2 is replaced by the bomb to be

tested, and a photon enters the interferometer at port in1. If the bomb
is a dud, which acts like a perfect mirror, the interferometer functions

normally, and the photon exits at port exit2. But if the bomb is good,
a photon in the state |out2〉 is absorbed, exploding the bomb. Thus
the test has three possible outcomes — either the photon is absorbed

and bomb explodes, or the bomb does not explode and the photon is
detected at port exit1 or port exit 2. The probabilities for these three

outcomes are

P (explode) = 1/2, P (exit1) = 1/4, P (exit2) = 1/4.
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If the photon is detected at port exit1, then we know that the bomb

must be good, even though no photon encountered the bomb. If the
photon is detected at port exit2, then the test is inconclusive – we do

not find out whether the bomb is good or a dud. However, if we repeat
the test many times and obtain the inconclusive result every time, we

conclude that the bomb is very likely to be a dud.

a) If the bomb is good, what is the probability of obtaining the in-
conclusive result N times in succession?

b) Suppose that the bomb is good, and that we repeat the test as many

times as necessary so that eventually either the bomb explodes or
the test yields a conclusive result. What is the probability that

the bomb eventually explodes?

We wish to improve the test by reducing the probability of exploding
a good bomb. For this purpose, we use an unbalanced beam splitter

described by the unitary transformation

V̂ =

(

cos(π/2N ) − sin(π/2N )

sin(π/2N ) cos(π/2N )

)

.

where N > 2 is a positive integer. The interferometer is configured so

that the photon passes through such a beam splitter N times before
finally exiting; thus the state of the exiting photon is related to the

state of the input photon by

vexit = V̂ Nvin.

c) Verify that

V̂ N =

(

0 −1
1 0

)

.

Thus a photon that enters at port in1 exits at port exit2.

d) To test a bomb, we configure the interferometer so that for each of

the first N−1 beam splitters, a photon emerging from the out2

port of the beam splitter encounters the bomb, exploding it if the

bomb is good. (A photon emerging from either port of the final
beam splitter is detected by one of the photon detectors.) If the
bomb is good, what is the probability that it does not explode?

Show that for large N your answer has the form

P (not explode) = 1 − c/N + O(1/N 2),

and find the number c.
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e) If the bomb does not explode, the photon is detected at either port

exit2, in which case the test is inconclusive, or at port exit1, in
which case the unexploded bomb is known to be good. Assuming

the bomb is good and does not explode, what is the probability
P (exit1|not explode) of a conclusive result? Show that for large

N your answer has the form

P (exit1|not explode) = 1 − d/N 2 + O(1/N 3),

and find the number d.

Thus by choosingN sufficiently large, we ensure that the probability of
exploding a good bomb is low and that the probability of a conclusive
test result is high.

3. Distinguishing nonorthogonal states. Alice tells Bob that she will
prepare a qubit in one of the two quantum states

|ψ1〉 =

(

cosα
sinα

)

, |ψ2〉 =

(

sinα
cosα

)

,

where 0 ≤ α ≤ π/4, and hence

0 ≤ 〈ψ2|ψ1〉 = sin(2α) ≤ 1.

To decide which state to prepare, Alice flips a fair coin; then she

prepares |ψ1〉 if result of the coin flip is “heads” and she prepares |ψ2〉
if the result of the coin flip is “tails.” After preparing the qubit, Alice

sends it to Bob, who performs a measurement that projects onto the
orthonormal basis

|e1〉 =

(

cos θ

sin θ

)

, |e2〉 =

(

− sin θ

cos θ

)

,

where 0 ≤ θ ≤ π/2. If Bob’s measurement outcome is |e1〉, he guesses
that Alice prepared |ψ1〉, and if Bob’s outcome is |e2〉, he guesses that

Alice prepared |ψ2〉.

a) Show that the probability that Bob’s guess is wrong can be ex-

pressed as

Perror =
1

2

(

|〈e2|ψ1〉|2 + |〈e1|ψ2〉|2
)

.
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b) Compute Perror, expressing your answer as a function of sin2 θ and

α.

c) How should Bob choose θ to minimize Perror, and what is the min-
imal error probability Pmin

error
he achieves by this choice?

d) What is Pmin
error

for α = 0 and for α = π/4? Explain why your

answers make sense.

e) What is Pmin
error for α = π/8? For this case, sketch the vectors |ψ1〉

and |ψ2〉 and the measurement axes |e1〉 and |e2〉 that minimize

Bob’s error probability.

4. A second look. A particle is confined inside a one-dimensional box

with walls at x = −L/2 and x = L/2. Its normalized wavefunction is

ψ(x) =

√

2

L
cos

(

πx

L

)

, x ∈
[

−L
2
,
L

2

]

.

a) A bright beam of light is focused on the interval [a, b], where

−L/2 ≤ a ≤ b ≤ L/2. If the particle lies in this interval, it
will scatter the light and be detected. Conversely, if no scattered

light is detected, then the particle is known to lie in the comple-
ment of this interval, [−L/2, a]∪ [b, L/2]. What is the probability

that scattered light is detected?

b) What is the numerical value of your answer from part (a) in the
case where the light beam illuminates the interval [L/4, 3L/8]?

c) Now suppose that the interval [−L/4, L/4] is illuminated and no

scattered light is detected. What is the updated wavefunction of
the particle right after this measurement?

d) Right after the measurement described in part (c), the interval

[L/4, 3L/8] is illuminated. What is the probability that scattered
light is detected?

e) Charlie thinks that the answers to parts (b) and (d) should agree.

He notes that in the measurement described in part (c) there
was no interaction between the light and the particle, and he
argues that therefore the quantum state of the particle outside

the illuminated interval [−L/4, L/4] should not have been altered.
Is there something wrong with Charlie’s argument?


