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Ph 12b

Homework Assignment No. 4
Due: 5pm, Thursday, 4 February 2010

1. Weaker decoherence. In class we discussed the phase damping of a
qubit that results when the qubit scatters a photon with probability p.
The scattered photon is knocked into one of two mutually orthogonal

states {|0〉E, |1〉E}, correlated with the qubit’s state, both of which are
orthogonal to the state |un〉E of the unscattered photon. If the initial

state of the qubit is |ψ〉S = a|0〉S + b|1〉S, then the joint state of the
qubit and photon evolves as

|ψ〉S⊗|un〉E →
√

1 − p |ψ〉S⊗|un〉E+
√
p (a|0〉S ⊗ |0〉E + b|1〉S ⊗ |1〉E) .

(1)

Thus the qubit density operator ρ̂ evolves as

ρ̂ =

(

ρ00 ρ01

ρ10 ρ11

)

→ ρ̂′ =

(

ρ00 (1 − p)ρ01

(1 − p)ρ10 ρ11

)

.

Now consider a different model of decoherence, in which photon scat-

tering does not perfectly resolve the state of the qubit. The scattered
photon is knocked to the normalized state |γ〉E if the qubit’s state is

|0〉S and it is knocked to the normalized state |η〉E if the photon’s state
is |1〉S; thus eq.(1) is replaced by

|ψ〉S⊗|un〉E →
√

1 − p |ψ〉S⊗|un〉E+
√
p (a|0〉S ⊗ |γ〉E + b|1〉S ⊗ |η〉E) .

(2)

Both |γ〉E and |η〉E are orthogonal to the state |un〉E of the unscattered
photon, but they are not necessarily mutually orthogonal; rather

E〈η|γ〉E = 1 − ε,

where ε is a real number. Thus for ε = 1, the states |γ〉E and |η〉E are
orthogonal, and we recover the model considered previously, while for

ε = 0, the scattered photon remains uncorrelated with the qubit, and
there is no decoherence at all.

Show that eq.(2) implies that the density operator evolves according
to

ρ̂ =

(

ρ00 ρ01

ρ10 ρ11

)

→ ρ̂′ =

(

ρ00 λρ01

λρ10 ρ11

)

,
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and express λ in terms of p and ε. You may find it convenient to

expand |γ〉E and |η〉E in terms of two orthonormal vectors |e0〉E and
|e1〉E (which are both orthogonal to |un〉E), so that

|γ〉E = γ0|e0〉E + γ1|e1〉E , |η〉E = η0|e0〉E + η1|e1〉E .

2. Master equation for spontaneous decay. A two-level atom has a

ground state |g〉 with energy Eg and an excited state |e〉 with energy
Ee = Eg + h̄ω. We may adjust the definition of energy by an additive

constant, so that the ground state has zero energy, and the excited
state’s energy is h̄ω. Thus the Hamiltonian of the atom is

Ĥ = h̄ω|e〉〈e|,

and the state vector |ψ(t)〉 of the atom evolves according to

|ψ(t+ dt)〉 = |ψ(t)〉 − iωdt|e〉〈e|ψ〉,

where dt is an infinitesimal time increment.

a) Recall that a general density operator ρ̂ for the atom can be repre-
sented as ρ̂ =

∑

a pa|ψa〉〈ψa|, where each |ψa〉 is a normalized

state vector and the pa’s are positive real numbers satisfying
∑

pa = 1. Show that the time-evolving density operator ρ̂(t)

obeys the differential equation

d

dt
ρ̂ = −iω|e〉〈e|ρ̂+ iωρ̂|e〉〈e|. (3)

b) Writing the density operator as the matrix

ρ̂ =

(

ρgg ρge

ρeg ρee

)

in the basis {|g〉, |e〉}, express eq.(3) as four separate differential
equations for ρgg(t) = 〈g|ρ̂|g〉, ρge(t) = 〈g|ρ̂|e〉, ρeg(t) = 〈e|ρ̂|g〉,
ρee(t) = 〈e|ρ̂|e〉. Solve these equations, finding ρ̂(t) in terms of
ρ̂(0).

Now suppose that the excited state of the atom can decay to the

ground state by emitting a photon. The rate for the decay process is
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Γ. Thus in the time interval (t, t+ dt) the joint state of the atom and

its environment evolves according to

|ψ(t)〉 ⊗ |0〉 →
(

|g〉〈g|ψ(t)〉+
√

1 − Γdt |e〉〈e|ψ(t)〉
)

⊗ |0〉

+
√

Γdt |g〉〈e|ψ(t)〉⊗ |1〉. (4)

Here |0〉 denotes the state of the environment containing no photon,

and |1〉 denotes the state of the environment containing one photon.
(For now we are considering only the evolution due to spontaneous

decay, we are ignoring the evolution arising from the Hamiltonian Ĥ.)

c) Show that eq.(4) implies a differential equation satisfied by the

density operator

d

dt
ρ̂ = Γ|g〉〈e|ρ̂|e〉〈g| − 1

2
Γ|e〉〈e|ρ̂− 1

2
Γρ̂|e〉〈e|. (5)

Eq.(5) is called the atom’s master equation.

d) Extract from eq.(5) differential equations satisfied by ρee, ρeg, and
ρge. Solve these equations, finding ρ̂(t) in terms of ρ̂(0).

e) When we combine eq.(5) describing spontaneous decay with eq.(3)

describing the atom’s evolution governed by the Schrödinger equa-
tion, we obtain a new master equation

d

dt
ρ̂ =

(

−iω − 1

2
Γ

)

|e〉〈e|ρ̂+

(

iω − 1

2
Γ

)

ρ̂|e〉〈e|+ Γ|g〉〈e|ρ̂|e〉〈g|.
(6)

Again, find differential equations satisfied by ρee, ρeg, and ρge and

solve them, determining ρ̂(t) in terms of ρ̂(0).

3. Diagonalizing the density operator. Suppose that the state of a
qubit is prepared by flipping a fair coin, and then preparing the state

vector |ψH〉 if the outcome of the coin flip is heads, and preparing the
state vector |ψT 〉 if the outcome of the coin flip is tails, where

|ψH〉 =

(

1
0

)

, |ψT 〉 =
1√
2

(

1
1

)

.

a) Find the density operator ρ̂ of the qubit.

b) What are the eigenvalues of ρ̂?
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c) Find the eigenvectors of ρ̂. It is convenient to express your answer

in terms of cos(π/8) and sin(π/8).

4. Schmidt decomposition. Consider a composite quantum system AB
with Hilbert space HAB = HA ⊗HB, where

dimension (HA) = dimension (HB) = N.

If {|ea〉, a = 1, 2, 3, . . .N} is an orthonormal basis for HA and and
{|fb〉, b = 1, 2, 3, . . .N} is an orthonormal basis for HB , then a nor-

malized state vector |ψ〉 ∈ HAB can be expanded as

|ψ〉 =
N
∑

a,b=1

ψab |ea〉 ⊗ |fb〉,

where
N
∑

a,b=1

|ψab|2 = 1.

a) Any N × N matrix M has a singular value decomposition M =
UDV , where U and V are N × N unitary matrices, and D

is a diagonal real N × N matrix with nonnegative eigenvalues.
Use the singular value decomposition to show that for any given

state vector |ψ〉 ∈ HAB , one can choose an orthonormal ba-
sis {|e′a〉, a = 1, 2, 3, . . .N} for HA and an orthonormal basis

{|f ′b〉, b = 1, 2, 3, . . .N} for HB such that |ψ〉 can be expressed
as

|ψ〉 =
N
∑

a=1

√
pa |e′a〉 ⊗ |f ′a〉, (7)

where the {pa} are nonnegative real numbers such that

N
∑

a=1

pa = 1.

This expression is called the Schmidt decomposition of the state
vector |ψ〉.

b) Using the expression for |ψ〉 in eq.(7), express the density opera-
tor ρ̂A for system A in the basis {|e′a〉} and express the density

operator ρ̂B for system B in the basis {|f ′a〉}.
c) What are the eigenvalues of ρ̂A and of ρ̂B?


