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Ph 12b

Homework Assignment No. 6

Due: 5pm, Thursday, 25 February 2010

1. Geometric phase (15 points).

Recall that the coherent state |α〉 of a harmonic oscillator, where α is

an arbitrary complex number, can be obtained by applying a unitary
displacement operator

D̂(α) = exp
(

αâ† − α∗â
)

to the ground state:
|α〉 = D̂(α)|0〉.

If α is real, then

D̂(α) = exp
(

−i
(

α
√

2
)

p̂ξ

)

,

where p̂ξ is the dimensionless momentum operator, and in that case

D̂(α) displaces the oscillator’s dimensionless position ξ̂ by α
√

2. If α

is imaginary, then

D̂(α) = exp
(

i
(

−iα
√

2
)

ξ̂
)

,

and in that case D̂(α) displaces p̂ξ by −iα
√

2. If both the real and the

imaginary part of α are nonzero, then D̂(α) displaces both the position
and the momentum. Because ξ̂ and p̂ξ do not commute ([ξ̂, p̂ξ] = i,

and [â, â†] = 1), displacements in different directions in the complex
plane do not commute.

a) In class we derived the identity

eÂeB̂ = e
1

2
[Â,B̂]eÂ+B̂

which holds if Â and B̂ both commute with the commutator
[Â, B̂]. Use this identity to show

D̂(β)D̂(α) = eiφ(β,α)D̂(β + α),

and find φ(β, α).
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b) Suppose that the oscillator is displaced by α(t), where α(0) = 0

and α(t) varies continuously with the time t. To understand
how this continuously varying displacement affects the oscillator’s

state, regard the cumulative displacement as a product of many
infinitesimal displacements, in each of which α advances from

α(t) to α(t) + dtdα
dt . Suppose that as t varies from 0 to tfin, α(t)

follows a path P from 0 to the final value αfin. Then if the initial

state vector of the oscillator at t = 0 is |ψ(0)〉, the final state
vector |ψ(tfin)〉 at t = tfin is

|ψ(tfin)〉 = eiφ(P )D̂(αfin)|ψ(0)〉,

where φ(P ) can be written as

φ(P ) =

∫

P
(A1dα1 +A2dα2) .

Here we have expressed α = α1 + iα2 in terms of its real and
imaginary parts, and (A1(α), A2(α)) can be regarded as a vector

field in the (α1, α2) plane. Find this vector field (A1, A2). You
will find it convenient to use the result of part (a) in the case

where β is the infinitesimal increment dα.

c) Now suppose that the path followed by α(t) is a closed path C
that returns to the origin at the final time t = tfin. In this case,

the displacement operator D̂(αfin) is the identity operator, but
the phase factor eiφ(C) may be nontrivial. It is called a “geo-

metric phase” because it depends only on the path followed in
the α plane, not on the initial state of the oscillator. Show, by

converting a line integral around the closed path C to a surface
integral over the enclosed region S, that the geometric phase can
be written as

exp (ic(Area)) ,

and find the constant c. Here

Area = ±
∫

S
dα1dα2,

with a + sign if C encloses S in a counter-clockwise sense, and a
− sign if C encloses S in a clockwise sense.

d) Suppose that the time-dependent Hamiltonian

Ĥ(t) = h̄Ω(−i)
(

âe−iνt − â†eiνt
)
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is applied to the oscillator during the time interval t ∈ [0, 2π/ν].

Then the infinitesimal time-evolution operator

Û(t+ dt, dt) = exp

(

− i

h̄
dt Ĥ(t)

)

is an infinitesimal displacement, in a direction that rotates uni-
formly as a function of t. Thus, the evolution can be described as
a continuously varying displacement in the α plane. Show that

the cumulative displacement vanishes at t = 2π/ν, compute the
area enclosed by the path, and find the geometric phase.

e) Now suppose that the oscillator is coupled to two qubits, labeled

A and B. The joint Hilbert space of the qubits and oscillator
is H = HA ⊗ HB ⊗ Hoscillator, the tensor product of the two-

qubit Hilbert space and the oscillator’s Hilbert space, and the
Hamiltonian acting on qubit and oscillator is

Ĥ(t) = h̄Ω
[

(σ3 ⊗ I + I ⊗ σ3) ⊗ (−i)
(

âe−iνt − â†eiνt
)]

.

If this Hamiltonian acts for a time 2π/ν, the geometric phase ac-
quired by the oscillator depends on the state of the qubits; hence
in effect the Hamiltonian applies a two-qubit unitary V̂ (Ω, ν)

transformation, which depends on Ω and ν. Denoting by {|0〉, |1〉}
the basis in which σ3 is diagonal, so that

σ3 = |0〉〈0| − |1〉〈1|,

the transformation V̂ (Ω, ν) is diagonal in the orthonormal basis

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉.

What are the eigenvalues of V̂ (Ω, ν)? For fixed Ω, find the largest
positive value of ν (and correspondingly the shortest possible du-

ration 2π/ν) such that the eigenvalues are (i, 1, 1, i).

[This transformation is called a geometric phase gate, and it can

be applied to a pair of two-level atomic ions in an electromagnetic
trap. The qubits are encoded in the internal states of the two

ions. The oscillator arises from the motion of the ions in the
harmonic trapping potential — specifically, it is a normal mode

of vibration in which both ions participate. The motion of the
two ions is coupled because of their mutual Coulomb repulsion.]
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2. Squeezing an Oscillator (15 points).

In class we constructed the coherent states of a harmonic oscillator,
and showed that these are minimum-uncertainty wave packets. In

this problem, you will construct another type of minimum-uncertainty
wave packet for the oscillator, called a “squeezed state.”

a) Suppose that B̂ is an anti-Hermitian operator; that is, B̂† = −B̂.

Show, to linear order in a power series expansion in ε, that eεB̂ is
unitary, if ε is real.

b) For B̂ anti-Hermitian, compute
(

eεB̂
)†
A

(

eεB̂
)

to linear order in ε,

assuming again that ε is real. (Express your answer in terms of
Â and the commutator [Â, B̂].)

Now consider a harmonic oscillator with Hamiltonian

Ĥ =
1

2
(p̂ξ)

2 +
1

2
ξ̂2 ,

where
[

ξ̂, p̂ξ

]

= i, and define the operator â (and its adjoint â†) by

ξ̂ =
1√
2

(

â+ â†
)

, p̂ξ =
−i√

2

(

â− â†
)

.

Also define a unitary operator

Ŝ(r) = exp

[

1

2
r

(

â2 − (â†)2
)

]

,

where r is real. (Ŝ(r) is called the “squeeze operator.”)

c) Compute, to linear order in ε,

Ŝ(ε)†âŜ(ε) and Ŝ(ε)†â†Ŝ(ε) .

d) Using the result from (c), compute, again to linear order in ε,

Ŝ(ε)†ξ̂Ŝ(ε) and Ŝ(ε)†p̂ξŜ(ε) .

e) A squeeze operator with finite r can be composed from many in-
finitesimal squeeze operators:

Ŝ(r) = lim
N→∞

(

Ŝ(r/N )
)N

.

Using the result from (d), compute

Ŝ(r)†ξ̂Ŝ(r) and Ŝ(r)†p̂ξŜ(r) .
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Let |0〉 denote the ground state of the harmonic oscillator, satisfying

â|0〉 = 0. Now consider a state |r〉 defined by

|r〉 ≡ Ŝ(r)|0〉 .

(This state is called a “squeezed state,” and r is called the “squeeze
factor.”)

f) Compute 〈r|ξ̂|r〉, and 〈r|p̂ξ|r〉, and compute the uncertainties (∆ξ)r

and (∆pξ)r in the state |r〉. Why is |r〉 called a “squeezed state?”

3. Anharmonic oscillator (10 points).

The one-dimensional harmonic oscillator, with Hamiltonian

Ĥ = h̄ω

(

1

2
p̂2

ξ +
1

2
ξ̂2

)

= h̄ω

(

â†â+
1

2

)

has an unusual property — all spacings between consecutive energy

levels are equal:
En+1 − En = h̄ω.

This property no longer holds if there is a small quartic term in the
potential energy, so that the Hamiltonian becomes

Ĥ = h̄ω

(

1

2
p̂2

ξ +
1

2
ξ̂2 + kξ̂4

)

,

where k is a small positive dimensionless number. The quartic term
produces a correction to the energy of the nth excited state, which

becomes
E ′

n = En + kh̄ω〈n|ξ̂4|n〉 + · · · .
Here we have written down only the constant and linear terms in a

power series expansion in k, but we will assume that k is sufficiently
small that the higher order corrections can be safely neglected.

a) Compute 〈n|ξ̂4|n〉, and hence find the leading k-dependent correc-
tion to the energy E ′

n. You will find it convenient to express ξ̂
in terms of the annihilation operator â and the creation operator

â†.

b) Because of the anharmonic term in the potential, the energy split-

ting E ′
21 ≡ E ′

2 − E ′
1 between the second and first excited states

differs from the energy splitting E ′
10 = E ′

1 −E ′
0 between the first
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excited state and the ground state. A useful measure of anhar-

monicity is the ratio

∆(k) =
E ′

21 −E ′
10

E ′
10

.

Compute ∆(k), to linear order in k.


