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Ph 12b

Homework Assignment No. 7

Due: 5pm, Thursday, 4 March 2010

1. Damped harmonic oscillator (15 points).

Let’s suppose the oscillations of a quantum harmonic oscillator with
circular frequency ω are damped because the oscillator can emit pho-

tons with energy h̄ω. When a photon is emitted, the oscillator makes
a transition from the energy eigenstate with energy En = nh̄ω to the

energy eigenstate with energy En−1 = (n− 1)h̄ω, and the photon car-
ries away the lost energy. The probability that a photon is emitted

in an infinitesimal time interval dt is Γdt; we say that Γ is the emis-
sion rate. Therefore, the coupled evolution of the oscillator and the
electromagnetic field for time interval dt can be described as:

|Ψ(0)〉 = |ψ〉 ⊗ |0〉 →

|Ψ(dt)〉 =
√

Γdt â|ψ〉 ⊗ |1〉+

(

Î − 1

2
Γdt â†â

)

|ψ〉 ⊗ |0〉.

Here |ψ〉 is the initial normalized state vector of the oscillator and

{|0〉, |1〉} are orthonormal states of the electromagnetic field; |0〉 de-
notes the state in which no photon has been emitted and |1〉 denotes
the state containing one photon. The operator â reduces the excita-

tion level of the oscillator by one unit, and the â†â factor in the second
term is needed to ensure that the evolution is unitary.

a) Check unitarity by verifying that 〈Ψ(dt)|Ψ(dt)〉 = 1, to linear order
in the small quantity dt.

Because the states {|0〉, |1〉} of the electromagnetic field are orthogonal,

the quantum state of the oscillator may decohere. Summing over these
basis states, we see that the initial pure state |ψ〉〈ψ| of the oscillator

evolves in time dt as

|ψ〉〈ψ| → 〈0|Ψ(dt)〉〈Ψ(dt)|0〉+ 〈1|Ψ(dt)〉〈Ψ(dt)|1〉

= Γdt â|ψ〉〈ψ|â† +

(

Î − 1

2
Γdt â†â

)

|ψ〉〈ψ|
(

Î − 1

2
Γdt â†â

)

;
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more generally, the initial (not necessarily pure) density operator ρ̂ of

the oscillator evolves as

ρ̂→ Γdt âρ̂â† +

(

Î − 1

2
Γdt â†â

)

ρ̂

(

Î − 1

2
Γdt â†â

)

. (1)

Now suppose that the initial state of the oscillator is a coherent state

|α〉 = e−|α|2/2
∞
∑

n=0

αn

√
n!
|n〉,

where α is a complex number. For this problem, we will ignore the

usual dynamics of the oscillator that causes α to rotate uniformly in
time: α → αe−iωt; equivalently, we will assume that the dynamics is
described in a “rotating frame” such that the rotation of α is trans-

formed away. We will only be interested in how the states of the
oscillator are affected by the damping described by eq.(1).

b) Show that, to linear order in dt,

(

Î − 1

2
Γdt â†â

)

|α〉 ≈ e−Γdt|α|2/2|α e−Γdt/2〉. (2)

Note that there are two things to check in eq.(2): that the value

of α decays with time, and that the normalization of the state
decays with time.

c) Verify that, also to linear order in dt,

Γdt â|α〉〈α|â† ≈ Γdt|α|2 |α e−Γdt/2〉〈α e−Γdt/2|,

and thus show that, to linear order in dt, |α〉〈α| evolves as

|α〉〈α| → |α e−Γdt/2〉〈α e−Γdt/2|.

By considering many consecutive small time increments, argue
that, in a finite time t, the initial coherent state evolves as

|α〉 → |α e−Γt/2〉.

Thus, the state remains a (pure) coherent state at all times, with

the value of α decaying exponentially with time. Since the energy
stored in the oscillator is proportional to |α|2, which decays like

e−Γt, we may say that Γ ≡ Γdamp is the damping rate of the
oscillator.
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Now consider what happens if the initial state of the oscillator is a

superposition of two coherent states:

|ψ〉 = Nα,β (|α〉 + |β〉) .

Here Nα,β is a real nonnegative normalization constant (note that,

though the states |α〉 and β〉 are both normalized, they are not neces-
sarily orthogonal).

d) Evaluate 〈β|α〉, and determine Nα,β.

For example we might choose α = ξ0/
√

2 and β = −ξ0/
√

2, so that the
two superposed coherent states are minimum uncertainty wavepackets
(with width ∆ξ = 1/

√
2) centered at dimensionless positions ±ξ0. If

|α − β| � 1, then the two wavepackets are well separated compared
to their width, and we might say that oscillator state |ψ〉 is “in two

places at once.” How quickly will such a superposition of two separated
wavepackets decohere?

The initial density operator of the oscillator is

ρ̂ = N 2
α,β(|α〉〈α|+ |α〉〈β|+ |β〉〈α|+ |β〉〈β|).

We already know from part (c) how the “diagonal” terms |α〉〈α| and
|β〉〈β| evolve, but what about the “off-diagonal” terms |α〉〈β| and

|β〉〈α|?

e) Using arguments similar to those used in parts (b) and (c), show
that in time t, the operator |α〉〈β| evolves as

|α〉〈β| → (phase)e−Γt|α−β|2/2|αe−Γt/2〉〈βe−Γt/2|,

where (phase) denotes a phase factor. Thus the off-diagonal terms

decay exponentially with time, at a rate

Γdecohere =
1

2
|α− β|2 Γdamp

proportional to the distance squared |α− β|2.
f) Consider an oscillator with mass m = 1 g, circular frequency

ω = 1 s−1 and (very good) quality factor Q ≡ ω/Γ = 109. Thus
the damping time is very long: over 30 years. A superposition
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of minimum uncertainty wavepackets is prepared, centered at po-

sitions x = ±1 cm. Estimate the decoherence rate. (Wow! For
macroscopic objects, decoherence is really fast! And here we have

ignored the effects of a nonzero temperature in the environment,
which would make it even faster.)

2. A narrow well (10 points).

Consider a particle with mass m moving in the potential

V = − h̄
2∆

m
δ(x),

where δ(x) denotes the Dirac δ-function. The potential is attractive
for ∆ > 0 and repulsive for ∆ < 0. The general solution to the time-

dependent Schrödinger equation, for energy E0 > 0, has the form

ϕ(x) = Aeikx +Be−ikx , x < 0,

ϕ(x) = Ceikx +De−ikx, x > 0,

where k2 = 2mE0/h̄
2, and we can determine C and D in terms of A

and B using matching conditions at the origin. One matching condi-
tion is

lim
ε→0

(ϕ(x− ε) − ϕ(x+ ε)) = 0.

We obtain another matching condition by integrating the Schrödinger

equation over the interval [−ε, ε]:

lim
ε→0

∫ ε

−ε
dx

(

− h̄2

2m

d2

dx2
− h̄2∆

m
δ(x)

)

ϕ(x)

= − lim
ε→0

h̄2

2m

(

d

dx
ϕ(ε)− d

dx
ϕ(−ε) + 2∆ϕ(0)

)

= E0 lim
ε→0

∫ ε

−ε
ϕ(x) = 0;

that is,

lim
ε→0

(

d

dx
ϕ(ε)− d

dx
ϕ(−ε)

)

= −2∆ϕ(0). (3)

a) Solve the matching conditions, finding a 2 × 2 matrix M(α) ex-
pressed in terms of α = ∆/k such that

(

C
D

)

= M(α)

(

A
B

)

.
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b) Find the inverse matrix M−1(α) such that
(

A
B

)

= M−1(α)

(

C
D

)

.

c) If there is no incoming wave from the left, then D = 0. Under
this assumption, use the result from (b) to find the transmission

amplitude C/A and the reflection amplitude B/A. Square these
to compute

T (α) =

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

, R(α) =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

in terms of α, and verify that R+ T = 1.

d) Find an imaginary value of k = iκ such that the transmission

amplitudeC/A diverges. This divergence signifies the existence of
a solution to the Schrödinger equation with A = 0 as well as D =
0. Show that for ∆ > 0 (the case of an attractive potential) this

solution is a normalizable bound state solution. (This connection
between poles in the transmission amplitude and bound states is

actually a general phenomenon.)

3. Two narrow wells (15 points).

Now consider a particle with mass m moving in the potential

V = − h̄
2∆

m
δ(x+ a)− h̄2∆

m
δ(x− a);

there are two δ-functions, of equal strength, centered at x = −a and

at x = +a. The general solution has the form

ϕ(x) = Aeikx +Be−ikx , x < −a,
ϕ(x) = Ceikx +De−ikx, −a < x < a,

ϕ(x) = Eeikx + Fe−ikx, x > a,

where k2 = 2mE0/h̄
2.

a) Solve the matching conditions at x = −a and x = a to find ma-
trices M(α, a) and N (α, a), and their inverses M−1(α, a) and
N−1(α, a), such that
(

A
B

)

= M−1(α, a)

(

C
D

)

,

(

C
D

)

= N−1(α, a)

(

E
F

)

,

where α = ∆/k.
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b) Assuming that F = 0, find B/E, compute its square |B|2/|E2| =

R/T , and find an expression for 1/T .

c) For fixed ∆ and k, how should a be chosen to maximize or minimize
the transmission?


