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Ph 12b

Homework Assignment No. 8

Due: 5pm, Thursday, 11 March 2010

1. A barrier in a well (10 points).

A free quantum-mechanical particle with mass m moves inside a one-
dimensional box with impenetrable walls located at x = ±a. Further-

more, a repulsive δ-function barrier sits at the center of the well, so
the potential energy function V (x) in between the two impenetrable

walls is given by

V (x) =
h̄2

m
∆δ(x) ,

where δ(x) denotes the Dirac δ-function and ∆ > 0. As explained in
Problem 2 last week, this δ-function potential causes the logarithmic

derivative of the wave function ϕ(x) to jump discontinuously at the
origin:

ϕ′(0+) − ϕ′(0−) = 2∆ϕ(0) .

Here ϕ′(x) denotes the first derivative of ϕ(x), and ϕ′(0+) (respectively
ϕ′(0−)) denotes the limit of ϕ′(x) as x approaches zero from positive

(negative) values. The sign convention used here for ∆ is the opposite
of that used last week; now ∆ > 0 is the case of a repulsive barrier.

a) For the even energy eigenstates, what is the value of the logarithmic
derivative ϕ′(x)/ϕ(x) at x = 0+ and x = 0−?

b) For the even energy eigenstates, derive an equation that determines the

wavenumber k implicitly, where E = h̄2k2/2m. Express your answer
in the form

∆a = f(ka),

where f is a suitable function.

c) Consider the limiting case of an infinitely strong repulsive barrier: ∆a →
∞. What are values of the energy eigenvalues in this limit, for both

even and odd n?

d) Draw rough sketches of the wave functions for the ground state and the
first excited state in the limit ∆a → ∞.
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2. Reflectionless potential (15 points).

Consider a particle with mass m moving in the attractive potential

V (x) = −
h̄2k2

0

m
sech2(k0x),

where sech(z) = 2 (ez + e−z)
−1

denotes the hyperbolic secant function.

a) Show that the time-independent Schrödinger equation for this po-
tential can be expressed as

(

−
d2

dz2
− 2 sech2(z)

)

ϕ(z) = k̄2ϕ(z), (1)

where z = k0x is a dimensionless position variable, and k̄2k2/k2
0 =

2mE/h̄2k2
0 is a dimensionless wavenumber.

b) Show that

(ik̄ − tanh(z))eik̄z (2)

solves eq.(1).

c) Show that eq.(2) approaches Aeik̄z as z → −∞ and approaches
Ceik̄z as z → +∞, where A and C are constants. What are the

values of these constants.

d) What is the transmission amplitude C/A? Show that the trans-
mission probability T = |C/A|2 is one, and that the reflection

probability R = 1 − T is zero. Hence, if a wavepacket is inci-
dent on this potential from the far left, there is no reflected wave
packet at all.

e) Find an imaginary value k̄ = iκ̄ such that A/C = 0 and the trans-
mission amplitude thus diverges. For this value of κ̄, there is a
normalizable bound state solution, which decays exponential for

both z → +∞ and z → −∞.

f) Check that
ϕ(z) = sech(z)

solves eq.(1), where k̄2 = −κ̄2 and κ̄ is the value found in (e).
This is the bound state solution. What is the corresponding

bound state energy?



3

3. Bound states in a linear potential (15 points).

Consider a particle with mass m moving in the potential

V (x) = F |x|

where |x| denotes the absolute value function. Thus there is a constant
force F directed toward the origin.

a) Show that the time-independent Schrödinger equation for this po-
tential can be expressed in the form (for x ≥ 0)

(

−
d2

dy2
+ y

)

ϕ(y) = Ē ϕ(y), (3)

where

y =

(

h̄2

2mF

)

−1/3

x, Ē =

(

h̄2F 2

2m

)

−1/3

E.

Equivalently, we may write

d2

dz2
ϕ(z) = z ϕ(z)

where z = y−Ē. The solution to this equation that decays as z → +∞

is the Airy function Ai(z).

All real zeros of Ai(z) and of its first derivative Ai′(z) occur for z < 0.
We denote the zeros of Ai′(z), in order of increasing absolute value, by

a0, a2, a4, . . ., and we denote the zeros of Ai(z) in order of increasing
absolute value by a1, a3, a5, . . .. These constants have the numerical

values:

−a0 = 1.0188 . . .

−a1 = 2.3381 . . .

−a2 = 3.2482 . . .

−a3 = 4.0879 . . .

−a4 = 4.8201 . . .

−a5 = 5.5206 . . .

(4)
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b) Show that for n = 0, 1, 2, . . . there is a bound state solution to the

Schrödinger equation with n nodes and dimensionless “energy”
Ē = Ēn = −an.

Using the WKB approximation and the connection formulas, we can
derive the Bohr-Sommerfeld criterion:

∫ x2

x1

dx k(x) = π

(

n +
1

2

)

,

where n is the number of nodes in the bound state wavefunction, En

is the corresponding energy, x1 and x2 are the classical turning points

for E = En, and k(x)2 = 2m (En − V (x)) /h̄2. For the harmonic
potential, this WKB estimate actually agrees with the exact value of

En, but in general there are corrections higher order in 1/n.

c) Apply the WKB criterion to the linear potential, deriving a formula
for Ēn. For n = 0, 1, 2, 3, 4, 5, compare to the exact result from
(b). You should find pretty good agreement for all n ≥ 1. Fur-

thermore, you should find (considering the odd and even values
of n separately), that the agreement gets systematically better as

n increases.


