
PH12b 2010 Solutions HW#1

1.

a) hi = 0 = hi imply that (∆)2 = ­2® and (∆)2 = ­2®  Using this we get
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Now, from the uncertainty relation we know that ∆ ≥ ̄2∆, therefore
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solving for ∆ we get
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This imply that
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Then, the value of the energy lower bound for any quantum state is the same as the ground state energy of

the one-dimensional harmonic oscillator.

2.

a) First we define

0 ≡ 0 − h0i 
0 ≡ 0 − h0i 

Because the position and momentum of the particle are "uncorrelated" then

h00i+ h00i = 0
Notice that 0 and 0 are operators that do not commute, therefore h00i 6= h00i 
We know that  = 0 + 0 then
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where we used h00i+ h00i = 0 From the uncertainty principle we know that ∆0 ≥ ̄2∆0, so finally

we get
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it is obvious that the lower bound is reach when ∆0 = 0 and therefore
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c) From b) we have that
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The size of a proton is around 1fm=10−15, then the standard quantum limit is four orders of magnitude

smaller.

3.

a) The Hamilton’s equations are
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The Hamiltonian of a one-dimensional harmonic oscillator is
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Therefore the Hamilton’s equations of motion for this system are
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b) See Fig.1. c) The equation for the orbits are
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as expected.

e) By the requirement that the action  is an integer multiple of Planck’s constant  we get
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Solving for  gives the energy levels of the harmonic oscillator

 =

µ


2

¶
  = 0 1 2 3   

4.

The Poisson bracket [] of  and  is defined as
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Figure 1: Orbits for several different values of the energy. The direction of the flow along the orbit is

CLOCKWISE.

The Hamilton’s equations are
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where  is the Hamiltonian.

a) Show that
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b) Show that [] = 0 if  = ()

Proof
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where we used the chain rule i.e.  = () () 

c) If  = 0 by a), assuming  =  we have
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now, by b), [] = 0, therefore
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d)
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because  = 0
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5.

a) The amplitudes are
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Then the probabilities are
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Notice that  () +  () = 1 as expected.

b) If the slit B is covered then
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If the slit A is covered then

 = () =
1√
2
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 () = | |2 = 12  () = ||2 = 12
c)  just appear in , then we can use  () and  () of a) in the following way
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