
PH12b 2010 Solutions HW#1

1.

a) hi = 0 = hi imply that (∆)2 = 2® and (∆)2 = 2®  Using this we get
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Now, from the uncertainty relation we know that ∆ ≥ ̄2∆, therefore
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solving for ∆ we get
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This imply that
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Then, the value of the energy lower bound for any quantum state is the same as the ground state energy of

the one-dimensional harmonic oscillator.

2.

a) First we define

0 ≡ 0 − h0i 
0 ≡ 0 − h0i 

Because the position and momentum of the particle are "uncorrelated" then

h00i+ h00i = 0
Notice that 0 and 0 are operators that do not commute, therefore h00i 6= h00i 
We know that  = 0 + 0 then
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where we used h00i+ h00i = 0 From the uncertainty principle we know that ∆0 ≥ ̄2∆0, so finally

we get
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b) Because
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it is obvious that the lower bound is reach when ∆0 = 0 and therefore
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c) From b) we have that

standard quantum limit =
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The size of a proton is around 1fm=10−15, then the standard quantum limit is four orders of magnitude

smaller.

3.

a) The Hamilton’s equations are
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The Hamiltonian of a one-dimensional harmonic oscillator is
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Therefore the Hamilton’s equations of motion for this system are

̇ = −2 ̇ = 

b) See Fig.1. c) The equation for the orbits are
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then the axis of the ellipse are  =
√
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p
22 (or vice versa). Then
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as expected.

e) By the requirement that the action  is an integer multiple of Planck’s constant  we get
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Solving for  gives the energy levels of the harmonic oscillator
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4.

The Poisson bracket [] of  and  is defined as
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Figure 1: Orbits for several different values of the energy. The direction of the flow along the orbit is

CLOCKWISE.

The Hamilton’s equations are
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where  is the Hamiltonian.

a) Show that
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where we used the chain rule i.e.  = () () 

c) If  = 0 by a), assuming  =  we have




= [] 

now, by b), [] = 0, therefore
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5.

a) The amplitudes are
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Then the probabilities are
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Notice that  () +  () = 1 as expected.

b) If the slit B is covered then
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If the slit A is covered then
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c)  just appear in , then we can use  () and  () of a) in the following way
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