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1. Quantized Rotor

a. We know that L is the conjugate momentum of θ. From equation 1.14 in Liboff we can evaluate the
equations of motion to see that

∂H

∂L
=
L

I
= θ̇.

Since θ is missing from the Hamiltonian, it is a cyclic variable and thus L is a constant of the motion.
As a result, the system is radially symmetric.

b. To find the eigenvalues and eigenfunctions of L̂, we need to consider solutions to the eigenvalue equation

−i~ d
dθ
ψ = λψ.

Using the solution in section 3.1 of Liboff as a guide, we can see that ψ = eimθ satisfies the differential
equation above and gives us eigenvalues of λ = m~. For periodicity, we note that

eim(θ+2π) = eimθ ⇒ em2π = 1 and m ∈ Z.

Normalization can be achieved by evaluating

1 =

∫ 2π

0

|ψλ(θ)|2 dθ =
∫ 2π

0

e−imθeimθ dθ = 2π ⇒ ψλ =
1√
2π
eimθ.

c. Let λ = m~ and λ′ = n~, where m ̸= n and m,n are integers. Then∫ 2π

0

ψ∗
λ(θ)ψλ′(θ) dθ =

1

2π

∫ 2π

0

e−imθeinθ =
1

2π

ei(n−m)θ

i(n−m)

∣∣∣2π
0

= 0,

as required.

d. We need to find the solutions to

−~2

2I

d2

dθ2
ψ = λψ.

From Liboff, we see that ψ = eimθ satisfies the differential equation and gives us eigenvalues of λ =
~2m2/2I. The periodicity condition implies that m ∈ Z, and the normalized eigenfunctions are given
by

1√
2π
eimθ.

e.

⟨L̂⟩ =
∫ 2π

0

ψ∗(θ)L̂ψ(θ) dθ = −i~
∫ 2π

0

ψ(θ)
d

dθ
ψ(θ) dθ
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Integrating by parts with u = ψ and dv = dψ/dθ, we get

⟨L̂⟩ = −i~
[
ψ2(θ)

∣∣∣2π
0

−
∫ 2π

0

ψ(θ)
dψ

dθ
dθ

]
= −i~ψ2(θ)

∣∣∣2π
0

− ⟨L̂⟩ ⇒ ⟨L̂⟩ = − i~
2
ψ2(θ)

∣∣∣2π
0

Because of the periodicity condition ψ(2π) = ψ(0), ⟨L̂⟩ = 0.

2. Twisted Rotor

a. Our analysis is the same as in 1b) with the exclusion of the periodicity condition. We instead have

eim(θ+2π) = eiαeimθ ⇒ eim2π = eiα ⇒ m =
α

2π
+ n

and thus the eigenvalues are λ =
(

α
2π + n

)
~, where n ∈ Z. Normalizing will produce eigenfunctions

similar to the ones above:

ψλ =
1√
2π
ei(α/2π+n)θ.

b. Let λ = (α/2π +m) ~ and λ′ = (α/2π + n) ~, where m ̸= n and m,n are integers. Then∫ 2π

0

ψλ(θ)
∗ψλ′(θ) dθ =

1

2π

∫ 2π

0

e−imθeinθ =
1

2π

ei(n−m)θ

i(n−m)

∣∣∣2π
0

= 0,

as required.

c. The eigenfunctions are the same as those derived in part 2a), and the eigenvalues are then

λ =
~2m2

2I
=

~2

2I

( α

2π
+ n

)2

, where n ∈ Z.

3. More Eigenfunctions

a. To show that ψ0 and ψ1 are eigenfunctions of Ĥ, we simply apply the operator to the functions:

Ĥψ0 =

(
− d2

dx2
+ x2

)
ψ0 = e−x2/2 − x2e−x2/2 + x2e−x2/2 = e−x2/2 = ψ0, λ = 1

Ĥψ1 =

(
− d2

dx2
+ x2

)
ψ1 = 3xe−x2/2 − x3e−x2/2 + x3e−x2/2 = 3e−x2/2 = 3ψ1, λ = 3

Orthogonality can be shown by evaluating∫ ∞

−∞
ψ∗
0(x)ψ1(x)dx =

∫ ∞

−∞
e−x2/2xe−x2/2dx =

∫ ∞

−∞
xe−x2

dx

It is easy to see that since the integrand is an odd function, the integral is zero. Alternatively, one can
do a u-substitution with u = x2 and easily show that the integral is zero.

b. Apply ψ2 to Ĥ:

Ĥψ2 =

(
− d2

dx2
+ x2

)
ψ2 = −

(
x4 + x2(C − 5)− C + 2

)
e−x2/2 + x2

(
x2 + C

)
e−x2/2

=
(
5x2 + C − 2

)
e−x2/2 = λ

(
x2 + C

)
e−x2/2
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Let us assume that λ = 5; the value of C must then be

5x2 + C − 2 = 5(x2 + C) ⇒ C = −1

2
.

c. ∫ ∞

−∞
ψ∗
0(x)ψ2(x)dx =

∫ ∞

−∞
e−x2/2(x2 − 1/2)e−x2/2dx =

∫ ∞

−∞
x2e−x2

dx− 1

2

∫ ∞

−∞
e−x2

dx = 0 (see hint)

∫ ∞

−∞
ψ∗
1(x)ψ2(x)dx =

∫ ∞

−∞
xe−x2/2(x2 − 1/2)e−x2/2dx =

∫ ∞

−∞
x3e−x2

dx︸ ︷︷ ︸
=0 since odd

−1

2

∫ ∞

−∞
xe−x2

dx︸ ︷︷ ︸
=0 from above

= 0

4. The Qubit

a. We need to show that the operator, for appropriate values of a, b, θ and ϕ, can take a basis vector of
the two dimensional Hilbert space and transform it into any other vector. As such, we need to show
that the operator, for an appropriate choice of constants, can represent any 2 × 2 Hermitian matrix.
Let us represent the operator as follows:(

h i
j k

)
=

(
h∗ j∗

i∗ k∗

)
(Hermitian property)

From this, we can see that since h = h∗ and k = k∗, they must be real. We can then express h and k
as

h = a+ c
k = a− c

where a and c are real. We can see that c = b cos θ, and as a result a = (h + k)/2. The constraint
i = j∗ suggests that we can write the complex number j in the form de−iϕ, where ϕ = arg{e} and d is a
real number that can be represented by b sin θ, where b > 0 represents the radius in polar coordinates.
Solving, we get that

a = h+k
2 b = |j|

sin θ θ = tan−1 2|j|
h−k ϕ = arg {j}

and thus the operator represents the most general Hermitian operator.

b. We need to solve det[σ̂ − λI] = 0 to find the eigenvalues:∣∣∣∣ cos θ − λ e−iϕ sin θ
eiϕ sin θ − cos θ − λ

∣∣∣∣ = − cos2 θ + λ2 − sin2 θ = 0,⇒ λ = ±1

Next we find the eigenvectors:(
cos θ − 1 e−iϕ sin θ
eiϕ sin θ − cos θ − 1

)(
η1
η2

)
= 0 ⇒

{
η1(cos θ − 1) + η2e

−iϕ sin θ = 0
η1e

iϕ sin θ − η2(cos θ + 1) = 0

⇒ ψ+ =

(
η1
η2

)
=

(
e−iϕ/2 cos(θ/2)
eiϕ/2 sin(θ/2)

)
(
cos θ + 1 e−iϕ sin θ
eiϕ sin θ − cos θ + 1

)(
η1
η2

)
= 0 ⇒ ψ− =

(
e−iϕ/2 sin(θ/2)
−eiϕ/2 cos(θ/2)

)
c. We need to evaluate ⟨ψ|σ̂|ψ⟩ for all the required expectations. Explicit calculations are only performed

for the first expectation. Note: unnormalized eigenvectors result in incorrect expectations. Make sure
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the eigenvectors used are normed.

⟨ψ+|σ̂1|ψ1⟩ =
(
eiϕ/2 cos θ

2 e−iϕ/2 sin θ
2

)(0 1
1 0

)(
e−iϕ/2 cos θ

2

eiϕ/2 sin θ
2

)
= cosϕ sin θ

⟨ψ+|σ̂2|ψ1⟩ = sinϕ sin θ ⟨ψ+|σ̂3|ψ1⟩ = cos θ

⟨ψ−|σ̂1|ψ−⟩ = − cosϕ sin θ ⟨ψ−|σ̂2|ψ−⟩ = − sinϕ sin θ ⟨ψ−|σ̂3|ψ−⟩ = − cos θ

d. We need to find the projection of ψ+ and ψ− on the eigenvectors of σ̂3, which are convieniently

(
1
0

)
and

(
0
1

)
: (work is provided only for the first example)

P (+) = ⟨pos|ψ+⟩ =
∣∣∣∣(1 0

)
·
(
e−iϕ/2 cos(θ/2)
eiϕ/2 sin(θ/2)

)∣∣∣∣2 = cos2
(
θ

2

)

P (+) = ⟨pos|ψ−⟩ = sin2
(
θ

2

)
P (−) = ⟨neg|ψ+⟩ = sin2

(
θ

2

)
P (−) = ⟨neg|ψ−⟩ = cos2

(
θ

2

)

4


