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1 The state |ψ〉S ⊗ |un〉E is transformed to√
1− p|ψ〉S ⊗ |un〉E +

√
p
(
a|0〉S ⊗ |γ〉E + b|1〉S ⊗ |η〉E

)
(1)

Since |γ〉E and |η〉E aren’t mutually orthogonal, we can’t use this equation
directly to compute the new density operator. Instead, we must change
to an orthonormal system, as suggested in the hint. One way to do this
is to keep |γ〉E and to take |δ〉E as the second basis vector, where |δ〉E is
determined by

|η〉E = (1− ε)|γ〉E +
√

2ε− ε2|δ〉E (2)

Substituting (2) into (1), we get that the new state is√
1− p|ψ〉S⊗|un〉E+

√
p
(
a|0〉S+b(1−ε)|1〉S

)
⊗|γ〉E+

√
pb
√

2ε− ε2|1〉S⊗|δ〉E
(3)

Remember that if we have a state∑
i

|ψi〉S ⊗ |fi〉E

with |fi〉E normalized and mutually orthogonal, then we calculate the
density operator by the formula

ρ̂ =
∑
i

|ψi〉S〈ψi|S

Working in the basis |0〉S , |1〉S of S, we have

√
1− p|ψ〉S =

√
1− p

(
a

b

)
√
p
(
a|0〉S + b(1− ε)|1〉S

)
=
√
p

(
a

b(1− ε)

)
√
p
√

2ε− ε2b|1〉S =
√
p
√

2ε− ε2
(

0
b

)
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so from (3) we get that the new density operator is

ρ̂′ = (1− p)
(
a∗ b∗

)(a
b

)
+ p
(
a∗ (1− ε)b∗

)( a

b(1− ε)

)
+ p(2ε− ε2)

(
0 b∗

)(0
b

)
=
(

|a|2 (1− pε)b∗a
(1− pε)a∗b |b|2

)
Comparing this to the original density operator

ρ̂ = |ψ〉S〈ψ|S =
(
a∗ b∗

)(a
b

)
=
(
|a|2 b∗a
a∗b |b|2

)
lets us read off that λ = 1− pε.

2 (a) We begin by analysing the evolution of a single term of the form
|ψ〉〈ψ|. If at time t we have |ψ(t)〉〈ψ(t)|, then at time t+ dt we have

|ψ(t+ dt)〉〈ψ(t+ dt)| =
(
|ψ(t)〉 − iωdt|e〉〈e||ψ(t)〉

)(
〈ψ(t)|+ iωdt〈ψ(t)||e〉〈e|

)
= |ψ(t)〉〈ψ(t)| − iωdt|e〉〈e||ψ(t)〉〈ψ(t)|

+ iωdt|ψ(t)〉〈ψ(t)||e〉〈e|+ ω2dt2|e〉〈e||ψ(t)〉〈ψ(t)||e〉〈e|

Notice that the right hand side is linear in |ψ(t)〉〈ψ(t)|. Since a
density operator is a linear combination of |ψi(t)〉〈ψi(t)| terms, by
summing the previous equation over such terms, for an arbitrary
density operator ρ̂(t) we have

ρ̂(t+ dt) = ρ̂(t)− iωdt|e〉〈e|ρ̂(t) + iωdtρ̂(t)|e〉〈e|+ ω2dt2|e〉〈e|ρ̂(t)|e〉〈e|

Now taking the limit of ρ̂(t+dt)−ρ̂(t)
dt as dt→ 0 gives

dρ̂

dt
= −iω|e〉〈e|ρ̂+ iωρ̂|e〉〈e| (4)

as required.
(b) In the basis {|g〉, |e〉}, we have |e〉 =

(
0
1

)
so |e〉〈e| = ( 0 0

0 1 ) and Eq. (4)
becomes
d

dt

(
ρgg ρge
ρeg ρee

)
= −iω

(
0 0
0 1

)(
ρgg ρge
ρeg ρee

)
+ iω

(
ρgg ρge
ρeg ρee

)(
0 0
0 1

)
=
(

0 iωρge
−iωρeg 0

)
Componentwise, we get the 4 differential equations

d

dt
ρgg = 0

d

dt
ρge = iωρge

d

dt
ρeg = −iωρeg

d

dt
ρee = 0
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The solutions of these equations, in terms of initial conditions at
t = 0, are

ρgg(t) = ρgg(0)

ρge(t) = eiωtρge(0)

ρeg(t) = e−iωtρeg(0)
ρee(t) = ρee(0)

so in terms of components of ρ̂(0), ρ̂(t) is given by

ρ̂(t) =
(

ρgg(0) eiωtρge(0)
e−iωtρeg(0) ρee(0)

)
(c) Using the same approach as in part (a), if at time t we had a pure

state ρ̂(t) = |ψ(t)〉〈ψ(t)|, then at time t + dt we have the density
operator

ρ̂(t+ dt) =
(
|g〉〈g||ψ(t)〉+

√
1− Γdt|e〉〈e||ψ(t)〉

)(
〈ψ(t)||g〉〈g|+

√
1− Γdt〈ψ(t)||e〉〈e|

)
+
(√

Γdt|g〉〈e||ψ(t)〉
)(√

Γdt〈ψ(t)||e〉〈g|
)

which can be rewritten as

ρ̂(t+ dt) = |g〉〈g|ρ̂(t)|g〉〈g|+
√

1− Γdt|e〉〈e|ρ̂(t)|g〉〈g|+
√

1− Γdt|g〉〈g|ρ̂(t)|e〉〈e|
+ (1− Γdt)|e〉〈e|ρ̂(t)|e〉〈e|+ Γdt|g〉〈e|ρ̂(t)|e〉〈g|

Moreover, since this equation is linear in ρ̂(t), it will still hold for an
arbitrary mixture of states. Since |g〉, |e〉 form an orthonormal basis
of the atom’s Hilbert space, we have |g〉〈g|+ |e〉〈e| = 1 which we use
with the previous equation to get

ρ̂(t+ dt)− ρ̂(t)
dt

=
√

1− Γdt− 1
dt

|e〉〈e|ρ̂(t)|g〉〈g|+
√

1− Γdt− 1
dt

|g〉〈g|ρ̂(t)|e〉〈e|

− Γ|e〉〈e|ρ̂(t)|e〉〈e|+ Γ|g〉〈e|ρ̂(t)|e〉〈g|

and taking the limit dt→ 0, this becomes

dρ

dt
= −Γ

2
|e〉〈e|ρ̂|g〉〈g| − Γ

2
|g〉〈g|ρ̂|e〉〈e| − Γ|e〉〈e|ρ̂|e〉〈e|+ Γ|g〉〈e|ρ̂|e〉〈g|

Again using |g〉〈g|+ |e〉〈e| = 1, this can be simplified to

dρ

dt
= −Γ

2
|e〉〈e|ρ̂− Γ

2
ρ̂|e〉〈e|+ Γ|g〉〈e|ρ̂|e〉〈g| (5)

proving the atom’s master equation.
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(d) Since |g〉 =
(

1
0

)
and |e〉 =

(
0
1

)
, we can rewrite Eq. (5) in the matrix

form as

d

dt

(
ρgg ρge
ρeg ρee

)
= −Γ

2

(
0 0
0 1

)(
ρgg ρge
ρeg ρee

)
− Γ

2

(
ρgg ρge
ρeg ρee

)(
0 0
0 1

)
+ Γ

(
0 1
0 0

)(
ρgg ρge
ρeg ρee

)(
0 0
1 0

)
=
(

Γρee −Γ
2 ρge

−Γ
2 ρeg −Γρee

)
Componentwise, we get the 4 differential equations

d

dt
ρgg = Γρee

d

dt
ρge = −Γ

2
ρge

d

dt
ρeg = −Γ

2
ρeg

d

dt
ρee = −Γρee

The one for ρgg is coupled with ρee, so we start by solving the other
three,

ρge(t) = e−Γt/2ρge(0)

ρeg(t) = e−Γt/2ρeg(0)

ρee(t) = e−Γtρee(0)

Now integrating the equation for dρgg/dt from 0 to t we get

ρgg(t) = ρgg(0) + (1− e−Γt)ρee(0)

so in terms of components of ρ̂(0), ρ̂(t) is given by

ρ̂(t) =
(
ρgg(0) + (1− e−Γt)ρee(0) e−Γt/2ρge(0)

e−Γt/2ρeg(0) e−Γtρee(0)

)
(e) Combining the two differential equations gives a new differential

equation, and we can combine them at the componentwise level, get-
ting

d

dt
ρgg = Γρee

d

dt
ρge =

(
−Γ

2
+ iω

)
ρge

d

dt
ρeg =

(
−Γ

2
− iω

)
ρeg

d

dt
ρee = −Γρee
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As in part (d), we start by solving the uncoupled differential equa-
tions, getting

ρge(t) = e(−
Γ
2 +iω)tρge(0)

ρeg(t) = e(−
Γ
2−iω)tρeg(0)

ρee(t) = e−Γtρee(0)

after which we integrate the equation for ρgg, getting

ρgg(t) = ρgg(0) + (1− e−Γt)ρee(0)

To summarize, in terms of components of ρ̂(0), ρ̂(t) is given by

ρ̂(t) =

(
ρgg(0) + (1− e−Γt)ρee(0) e(−

Γ
2 +iω)tρge(0)

e(−
Γ
2−iω)tρeg(0) e−Γtρee(0)

)

3 (a) Since we have 1/2 probability for each of the states |ψH〉, |ψT 〉, the
density operator is

ρ̂ =
1
2
|ψH〉〈ψH |+

1
2
|ψT 〉〈ψT |

=
1
2
(
1 0

)(1
0

)
+

1
2
(
1/
√

2 1/
√

2
)(1/

√
2

1/
√

2

)
=
(

3/4 1/4
1/4 1/4

)
(b) Eigenvalues λ of ρ̂ satisfy the characteristic equation

(
3
4
− λ)(

1
4
− λ)− 1

4
1
4

= 0

which has the solutions

λ± =
1
2
±
√

1
8

(6)

(c) From the equation(
3/4− λ± 1/4

1/4 1/4− λ±

)(
u±
v±

)
= 0

we get (1∓
√

2)u±+ v± = 0. If we focus on normalized eigenvectors,
u2
± + v2

± = 1, and combining these two equations gives, after some
algebra, (

u±
v±

)
=

( √
2±
√

2/2
±
√

2∓
√

2/2

)
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By comparing these with the values of cos(π/8), sin(π/8) (which you
can calculate using the half-angle formulas), you may notice that(

u+

v+

)
=
(

cos(π/8)
sin(π/8)

)
(
u−
v−

)
=
(

sin(π/8)
− cos(π/8)

)
Another reason to suspect that the angle π/8 would have something
to do with the solution is just by noticing that |ψH〉, |ψT 〉 are vectors
with phases 0 and π/4, and since they contribute equally to the
density operator, it is to be expected that the density operator has
some sort of symmetry around the axis with angle π/8.

4 (a) Let M be the matrix (ψab)Na,b=1. By the singular value decomposi-
tion, there exist unitary matrices U = (uai)Na,i=1 and V = (vjb)Nj,b=1

such that M = UDV with D = (dij)Ni,j=1 a diagonal real N × N
matrix with nonnegative eigenvalues. In componentwise notation,
M = UDV becomes

ψab =
N∑

i,j=1

uaidijvjb

which we can use to express |ψ〉 as

|ψ〉 =
N∑

a,b=1

ψab|ea〉 ⊗ |fb〉

=
N∑

a,i,j,b=1

uaidijvjb|ea〉 ⊗ |fb〉

=
N∑

i,j=1

dij

(
N∑
a=1

uai|ea〉

)
⊗

(
N∑
b=1

vjb|fb〉

)

Now we use the condition that U and V are unitary. Remember that
unitary matrices correspond to transformations from one orthonor-
mal basis to another. Treating U as a unitary matrix acting on HA,
we see that

|e′i〉 =
N∑
a=1

uai|ea〉

defines a new orthonormal basis of HA, and treating V as a unitary
matrix acting on HB , we see that

|f ′j〉 =
N∑
b=1

vjb|fb〉
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defines a new orthonormal basis ofHB (note that here the summation
is in the second index of vjb, so this transform actually corresponds to
V T , but that is irrelevant because the transpose of a unitary matrix
is again unitary).
With these new bases for HA and HB , the state |ψ〉 is represented as

|ψ〉 =
N∑

i,j=1

dij |e′i〉 ⊗ |f ′j〉

But remember that D is a diagonal real matrix with nonnegative
eigenvalues! Thus, dij = 0 for i 6= j. Denote also pi = d2

ii. Then the
previous equation becomes

|ψ〉 =
N∑
i=1

√
pi|e′i〉 ⊗ |f ′i〉 (7)

Since we know that the state is normalized, 〈ψ||ψ〉 = 1, which can,
by the formula given in the problem, be expressed componentwise as

N∑
i=1

|√pi|2 = 1

Thus,
∑N
i=1 pi = 1.

(b) From Eq. (7), since |f ′i〉 are orthonormal vectors, we get

ρ̂A =
N∑
i=1

pi|e′i〉〈e′i| (8)

Since {|e′i〉} form an orthonormal basis, in that basis ρ̂a is a diagonal
matrix,

ρ̂A =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pN

 (9)

Analogously, the density operator for system B can be written in
basis {|f ′i〉} as

ρ̂B =
N∑
i=1

pi|f ′i〉〈f ′i | =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pN

 (10)

(c) Since from part (b) we have representations of ρ̂A and ρ̂B as diagonal
matrices, their eigenvalues are just the elements on the diagonal.
Thus, reading off from Eqs. (9) and (10) we see that ρ̂A and ρ̂B have
the same eigenvalues p1, p2, . . . , pN .
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