
PH12b 2010 Solutions HW#5

1.

a) We solve the di¤erential equation in the following way�
�i d
dx
� ix� �

�
 (x) = 0;

) d

dx
 (x) = (�x+ i�) (x) ;

) d (x)

 (x)
= (�x+ i�) dx;

) log (x) = �1
2
x2 + i�x+ c;

)  (x) = C exp

�
�1
2
x2 + i�x

�
:

where c; C; are constants.
b) We can write the wavefunction in the following way

 (x) = C exp

�
�1
2
x2 + iRe (�)x� Im (�)x

�
;

= C exp

"
�1
2


�
x+

Im (�)



�2
+ iRe (�)x+

Im (�)
2

2

#
;

= C 0 exp

"
�1
2


�
x+

Im (�)



�2
+ iRe (�)x

#
;

where C 0 is another constant. Then, because j (x)j2 / exp
h
� (x+ Im (�) =)2

i
and  is a real number, it

is easy to see that the wave function is normalizable if

 > 0:

c) Lets calculate hx̂i and
D
k̂
E
:

hx̂i =

1Z
�1

x j (x)j2 dx =
1Z
�1

(x� Im (�) =) j (x� Im (�) =)j2 dx;

=

1Z
�1

x j (x� Im (�) =)j2 dx� Im (�) =
1Z
�1

j (x)j2 dx;

= 0� Im (�) =;
= � Im (�) =:

The �rst integral in the second line vanished trivially by parity since the integrand is an odd function.
Now, D

k̂
E

=

1Z
�1

 � (x)

�
�i d
dx

�
 (x) dx;

= �
1Z
�1

x j (x� Im (�) =)j2 dx+Re (�)
1Z
�1

j (x)j2 dx;

= 0 + Re (�) :

= Re (�) :
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Therefore, the expectation value of the position or in this case the center of the wavepacket is given by
hxi = � Im (�) =; while the expectation value of the wave-number operator or in this case the center of the
wavepacket in momentum space is

D
k̂
E
= Re (�) :

2.

�̂1 =

�
0 1
1 0

�
; �̂2 =

�
0 �i
i 0

�
; �̂3 =

�
1 0
0 �1

�
:

a) Substituting  = sin �; 0 � � � �=2 in Eq. (4) we get�
�i sin � � � 1

1 i sin � � �

�
j i = 0;

In order to have a solution

det

�
�i sin � � � 1

1 i sin � � �

�
= 0;

)
�
sin2 � + �2

�
� 1 = 0;

) �2 = 1� sin2 �;
) � = cos �:

b) Consider j i =
�
a
b

�
then �

�ei� 1
1 �e�i�

��
a

b

�
= 0;

) �aei� + b = 0;
) b = aei�:

We still need to normalize j i i.e h j i = 1; after this we get

j i = 1p
2

�
e�i�=2

ei�=2

�
:

Remember that j i � ei� j i where � 2 <.
c)

h j �̂1 j i =
1

2

�
ei�=2 e�i�=2

�� 0 1
1 0

��
e�i�=2

ei�=2

�
= cos �;

h j �̂3 j i =
1

2

�
ei�=2 e�i�=2

�� 1 0
0 �1

��
e�i�=2

ei�=2

�
= 0;

h j �̂21 j i = h j I j i = h j i = 1;

h j �̂23 j i = h j I j i = h j i = 1;

then

��̂1 =
p
1� cos2 � = sin �;

��̂3 = 1:

��̂1��̂3 = sin �

Finally,
h j [�̂1; �̂3] j i = �2i h j �̂2 j i = �2i sin �;

) 1

2
jh j [�̂1; �̂3] j ij = sin �;
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this proves that Eq. (3) is satis�ed.
d) We can solve the case  = 1= sin � in the same way we solve a) and b). Here we are going to use

another method.
We want to solve

(�̂3 � i sin ��̂1 � �) j�i = 0;
however we already have the solution for

(�̂1 � i sin ��̂3 � �) j i = 0:

Then if we can make the �rst equation to look like the second one we are done. To do this �rst notice that
we can write the �rst equation as

S (�̂3 � i sin �̂1 � �)STS j�i = 0;�
S�̂3S

T � i sinS�̂1ST � �
�
j i = 0;

where S is an orthogonal matrix i.e. STS = 1; and j i = S j�i :
Then we only need to �nd an orthogonal matrix that satisfy

S�̂3S
T = �̂1;

S�̂1S
T = �̂3;

to make the �rst equation to look like the second one. It is easy to check that the matrix that has these
properties is

S =
1p
2

�
1 1
1 �1

�
:

Then, from the results of a) and b) we see that � is still

� = cos �;

and that

j�i = ST j i = 1p
2

�
1 1
1 �1

�
1p
2

�
e�i�=2

ei�=2

�
;

=

�
cos �=2

i sin �=2

�
:

Finally,

h�j �̂1 j�i = h jSt�̂1S j i = h j �̂3 j i = 0;
h�j �̂3 j�i = h jSt�̂3S j i = h j �̂1 j i = cos �;

h�j �̂21 j�i = 1;
h�j �̂23 j�i = 1;

then

��̂3 =
p
1� cos2 � = sin �;

��̂1 = 1:

��̂1��̂3 = sin �

Finally,
h�j [�̂1; �̂3] j�i = h j [�̂3; �̂1] j i = 2i sin �;

) 1

2
jh�j [�̂1; �̂3] j�ij = sin �;

proving that Eq. (3) is satis�ed.
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3.

The following general integral of a Gaussian function is useful

1Z
�1

Ae�Bx
2+Cx+F = A

r
�

B
eC

2=4B+F :

a) The wavefunctions are

 (x) =
1

(2�a2)
1=4

e�(x�x0)
2=4a2 ;

' (x) =
1

(2�b2)
1=4

e�y
2=4b2 :

Then

p(y) =

1Z
�1

dx j (x)j2 j' (y � x)j2 ;

=
1

2�ab

1Z
�1

dxe�(x�x0)
2=2a2e�y

2=2b2 ;

=
1

2�ab

1Z
�1

dx exp
h
�(x� x0)2=2a2 � (y � x)2 =2b2

i
;

=
1

2�ab

1Z
�1

dx0 exp
h
�x02=2a2 � [x0 � (y � x0)]2 =2b2

i
; x0 = x� x0;

=
1

2�ab

1Z
�1

dx0 exp

"
�x02 1

2

�
1

a2
+
1

b2

�
+
(y � x0)2

b2
x� (y � x0)

2

2b2

#
;

=

s
1

2� (a2 + b2)
exp

"
� (y � x0)

2

2b2

#
exp

"
(y � x0)2

2b2
a2

(a2 + b2)

#
;

=

s
1

2� (a2 + b2)
exp

"
�1
2

(y � x0)2

(a2 + b2)

#
:

Then

p(y) =

s
1

2� (a2 + b2)
exp

"
�1
2

(y � x0)2

(a2 + b2)

#
;

which is just a Gaussian with variance �2 =
�
a2 + b2

�
and mean � = x0, then

hyi = x0;

(�y)
2
=

D
(y � hyi)2

E
= �2 =

�
a2 + b2

�
:

Notice that the variance is the addition of the variance of the particle and the meter.
b) By substituting the functions in the formula for p(xjy) we get

p(xjy) =

r
(a2 + b2)

2�a2b2
exp

"
1

2

(y � x0)2

(a2 + b2)

#
exp

"
� (x� x0)

2

2a2
� (y � x)

2

2b2

#
;

=

r
(a2 + b2)

2�a2b2
exp

"
� (x� x0)

2

2a2
� (y � x)

2

2b2
+
1

2

(y � x0)2

(a2 + b2)

#
:
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To calculate hxiy we can just do the integral by brute force or we can use the method that Feynman would
prefer by di¤erentiation under the integral. Notice that

dp(y)

dx0
=

1Z
�1

dx j (x)j2 j' (y � x)j2
�
(x� x0)

a2

�

=

1Z
�1

dx j (x)j2 j' (y � x)j2
� x
a2

�
� p(y)x0

a2
;

also from the explicit form of p(y) we get

dp(y)

dx0
=
(y � x0)
(a2 + b2)

p(y)

from this we get that

hxiy =
1

p(y)

1Z
�1

dx j (x)j2 j' (y � x)j2 x

=
1

p(y)

�
a2
dp(y)

dx0
+ p(y)x0

�
= a2

(y � x0)
(a2 + b2)

+ x0

=
a2y + b2x0
(a2 + b2)

:

Then

hxiy =
a2y + b2x0
(a2 + b2)

:

For


x2
�
y
we proceed as follow

d

da
[ap(y)] =

1

2�b

1Z
�1

dx exp
h
�(x� x0)2=2a2 � (y � x)2 =2b2

i � (x� x0)2
a3

�

=
1

2�ab

1Z
�1

dx exp
h
�(x� x0)2=2a2 � (y � x)2 =2b2

i �x2 � 2xx0 + x20
a2

�

=
p(y)

a2


x2
�
y
� 2x0

a2
hxiy p(y) + p(y)

x20
a2
;

=
p(y)

a2

h

x2
�
y
� 2x0 hxiy + x

2
0

i
:

Also by using the explicit form of p(y) we get

d

da
[ap(y)] = p(y)� a2

(a2 + b2)
p(y) + p(y)

a2 (y � x0)2

(a2 + b2)
2

= p(y)

"
b2

(a2 + b2)
+
a2 (y � x0)2

(a2 + b2)
2

#
;

= p(y)

�
b2

(a2 + b2)
+
1

a2

�
hxiy � x0

�2�
;
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Combining both results we geth

x2
�
y
� 2x0 hxiy + x

2
0

i
=

�
a2b2

(a2 + b2)
+
�
hxiy � x0

�2�
:

)


x2
�
y
=

a2b2

(a2 + b2)
+
�
hxiy � x0

�2
+ 2x0 hxiy � x

2
0

=


x2
�
y
=

a2b2

(a2 + b2)
+ hxi2y

Finally, h
(�x)

2
i
y
=


x2
�
y
� hxi2y =

a2b2

(a2 + b2)
:

For a narrow meter b2 � a2 we have
hxiy ' y;h

(�x)
2
i
y
' b2;

this make sense since for a narrow meter after the measurement we are going to know that the particle is
around y with the same uncertainty or "resolution" that the meter has. This is, p(xjy) ' j'(x� y)j2 for a
narrow meter as expected.
For a broad meter b2 � a2 we have

hxiy ' x0 = hyi ;h
(�x)

2
i
y
' a2 = (�y)

2
;

this make sense since a broad meter cannot give us better information than the one we already know about
 (x) from a). This is, p(xjy) ' j (x)j2 for a broad meter as expected.
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