PH12b 2010 Solutions HW#5
1.

a) We solve the differential equation in the following way

<_ic;ia: —iyr — )\) ¥ (z) =0,

= Y@= (NG (),

dy () _ )
= = (et
= logv (z) = —%73:2 + iz +c,

= ¢ (x)=Cexp (—;va + i)\:v> .

where ¢, C, are constants.
b) We can write the wavefunction in the following way

Y (zx) = Cexp <—;’yx2 +iRe(A)z —Im(N) x> ,

2 2
Cexp [_;7<$+Imy()\)> +7jRe()\)x+ImQ(;‘)1’
= (C'exp [;’y (z+1m7()\)) +iRe(A\)z

where €’ is another constant. Then, because [t (z)|* o exp {—’y (x4 Im (N) /7)2} and v is a real number, it

)

is easy to see that the wave function is normalizable if

v > 0.
c) Lets calculate () and </A€>
@ = [eW@Pdo= [@-m®)/MW e -0 /)P
= [l -t P de -1y [ 10 @) de,
= 0-Im(}\) /v,
— () /7

The first integral in the second line vanished trivially by parity since the integrand is an odd function.

Now,
(k) / (@ (—z)w(@ s,

- /w(xflm()/w dz + Re (A /\w )P da,

= 0+_Re( A).
= Re(N).



Therefore, the expectation value of the position or in this case the center of the wavepacket is given by
(x) = —Im (X) /7, while the expectation value of the wave-number operator or in this case the center of the

wavepacket in momentum space is <IA€> =Re(N).
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a) Substituting v =sinf, 0 < 0 < /2 in Eq. (4) we get

—isinf — A 1
( 1 isine—)\>|w>:0’
—isinf — A 1
det( 1 isin@)\)_o’
= (sin®0+)\°) —1=0,

= AN =1-sin?0,
= )\ =cosb.

2.

In order to have a solution

b) Consider [¢) = () then

= —ae? +b=0,

= b=ae".

We still need to normalize [1)) i.e (¢ i) = 1, after this we get

1 —i60/2
)= 75 (s )-

Remember that |¢) ~ e 1) where a € R.

c)
—i6/2
(| 61 1) = %( ei0/2  —i0/2 ) < (1) é ) (eew/Q) = cos b,
1 ) ) —i0/2
(|63 |v) = 5( 02 el ) ( (1) j)l ) <€€i9/2> =
W61 1) = (W T1$) = (¥ [¢) =1,
(W65 1) = W) = (¥ lv) =1,
then
Ay = +/1—cos?260 =sinb,
Ay = 1.
Aa‘lAé'g = sinf
Finally,

(Y| [61,05] [v) = —2i (Y| o2 |¢) = —2isinb,

= Sl 1,65] [0)] = sind,



this proves that Eq. (3) is satisfied.

d) We can solve the case v = 1/sin6 in the same way we solve a) and b). Here we are going to use
another method.

We want to solve

(6’3 — isin&&l - )\) |¢> = 0,
however we already have the solution for
(6’1 — z’sin&&g — )\) |’(/J> =0.

Then if we can make the first equation to look like the second one we are done. To do this first notice that
we can write the first equation as

S (63 —isingy — \)STS|¢p) =
(S638T —isinS518T —\) [y) =

0,
0,

where S is an orthogonal matrix i.e. ST.S =1, and 1)) = S |¢).
Then we only need to find an orthogonal matrix that satisfy

S638T = &4,

S5,8T = 63,

to make the first equation to look like the second one. It is easy to check that the matrix that has these

properties is
1 1 1
=71 4)

Then, from the results of a) and b) we see that A is still

A = cosf,
and that
1 /1 1 1 (e /2
o = sT=25(1 1) 5 (Ge ).
B cos /2
B (isin9/2>'
Finally,
(@lole) = @]S'618[¢) = (¥[a3]¥) =0,
(0losle) = (¥]S'63S ) = (Y] G1]¥) = cosd,
(¢l ot 1e) =1,
(¢l a3 10) =1,
then
Ab3 = y/1—cos?2f =sinb,
Ao, = 1.
A&lA&g = sinf
Finally,

(616,631 16) = (91 [63,51] [0} = 2isin,
= 6l 161,63]|9)] = sin6,

proving that Eq. (3) is satisfied.



3.

The following general integral of a Gaussian function is useful

o0

=z — x,

(y — 560)21
262 ’

)

/ Ae—B;c2+Cx+F — A 1602/4B+F.
B
a) The wavefunctions are
1 2 2
w(x) — e—(x—acg) /4a ,
(27ra2)1/4
1 2 2
plr) = ———e¥ /467,
) (27rb2)1/4
Then
2 2
o) = [ sl @Plew-oP,
_ 1 7 dmef(w7m0)2/2a267y2/2b2
2mab ’
1 o0
_ e N27942 (0 N2 o2
= 5 / dx exp [ (x —x0)*/2a° — (y — )" /2b ] ,
o / dz' exp {—x’2/2a2 — ' = (y — m0)] /2b2}
2mwab ’
17 L1 1\ (y—a0)
= 5 / dz’ exp [—:c’ B (aQ + b2> R T R
— — __exp —7@ _ x0)2 exp (v — x0)2
27 (a? + b?) 202 262 (a2 +b?)
- 1 1 (y — .’E())2
= ————eXp |~ =
27 (a? + b?) 2 (a2 +b?)
Then
(y) = 1 ox _EM
Py = 27 (a? 4+ b?) P 2 (a2 +82) |’

which is just a Gaussian with variance o2 = (a2 + b2) and mean pu = xg, then

(y) = o,

(Ay)? = <(y - <y>)2> =% = (a®+1%).

Notice that the variance is the addition of the variance of the particle and the meter.

b) By substituting the functions in the formula for p(z|y) we get

_ @+ 0?) 1 (y — o) (—m)? (y—a)’
plaly) = ora?t? P |2 (a® +b?) P 2a2 202 |7
@ [ e @ 1w
2ma?bh? 2a? 2b2 2 (a®> +0?)




To calculate (x) , We can just do the integral by brute force or we can use the method that Feynman would
prefer by differentiation under the integral. Notice that

a2

dp(y) 7 dz |y (@) | (y — =) [(x_%)}

[l @ lew-aF (%) -rw

— 00
also from the explicit form of p(y) we get

dply) _ (y — o)

dxo - (a® + b2)p(y)

from this we get that

1 o]
@, = = [ @@Pley -
_ L[ adp(y)
_ 2 (y - 330)
= a 7((12 T b2) + x9
a’y + b2z
@+
Then
(z) = a’y + b2z
y (@2 +12)
For <x2>y we proceed as follow
d _ 1 b 2 /6,2 2 5,21 [ (& —m0)?
)] = oo [ dvep [~ - w026 - (y - o) 2] |00
1 T 2 0 2 9 ool [22 — 2320 + 23
= 5 dx exp [—(x—mo) /2a° — (y —x)” /2b } —Qe
p(y r a
= P9 0™ (), o) () 2,
ply
= PO (a2 w403
Also by using the explicit form of p(y) we get
d a® a?(y — xo)z

7 [P )] p(y) — mﬁ(y) +p(y)

(a2 + b2)?
R xof]

((12 +b2) (CL2 + b2)2

Rl (C



Combining both results we get

a’b?

[<x2>y — 2z (z),, + x%} = [M + ((a:)y - 3:0)1 .

a’b? 2
= (a?), = (@fb?) (t2), —20) " + 20 (2), — o7
2 a’b’ 2
= <:E >y = (G/Q + b2) + <x>y

Finally, -
[(@0?] = (@), - )2 - (a;‘sz)

For a narrow meter b% < a? we have
(), ~v,

[(Am)Q] , ~ b2

this make sense since for a narrow meter after the measurement we are going to know that the particle is
around y with the same uncertainty or "resolution" that the meter has. This is, p(z|y) ~ |p(z — y)\2 for a

narrow meter as expected.
For a broad meter b > a2 we have
<$>y ~ 1z = (y),

(8a)?] ~a?= (a9,

this make sense since a broad meter cannot give us better information than the one we already know about
¢(x) from a). This is, p(z]y) ~ |[¢(z)|* for a broad meter as expected.



