Homework 6 Solutions

Ph 12b Winter 2010
March 3, 2010

1. Geometric Phase

a. Simply plug-and-chug;:

D(B)D(ar) = exp (Ba' — B*a) exp (aa’ — a*a)

A B
A+B=pal —pga+ad’ —ata=(B+a)a’ — (B+a)a=D(B+a)
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[A, B] = —a*Bala — afad’ + ap*ala + o B x aal = B — ap* = e ?P) = ¢izi* Fmob

= ¢(B, @) = Im[a” f]
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b. Using the previous result as the hint suggests, the incremental change in the displacement can be
represented by
D(de)D(a) = € D(a + de), where ¢ = Im[a*da] = Im[(a — ia)(a + ida)] = —agday + aydas
Since ¢(P) is the total phase accumulated over path P, we get that

—adoy + ardas = ¢(P) = /(—Ckgdal + aldag) = A1 = —Qa9, A2 =
P

c. Stoke’s theorem (generalized Green’s theorem) states that [, A -da = [¢ (V x A)dd. From the result
in part b), we see that ¢(P) = [, A -dd, where A = (—az, ), which implies V x A = 2, or

explip(P)] = exp [22/ daldag] , c=2.
s
The sign of the integral depends how C' encloses S.
d. We need to find the total displacement D(c):
H(t) = hQ(—i)(ae™ ™ — ate™) = U(t + dt, dt) = exp(—dtQ(ae~ "t — afe?))

¢ ¢ ¢
D(a) = /0 Udt = exp {/0 Qatet — de“’t)dt} since D(a) = (adT —a*a), a= /0 Qetat

Q. 2
=alt)=—(""-1), a <7T) =0, so the cumulative displacement is 0
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From part b), we know that Area = 5 / ardog — asda
P
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alzzsinyt; %:Qcosyt a2:;(1—cosut); %:Qsinyt
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= A= f/ —sinvt - Qsinvtdt — —(1 — cosvt) - Qeosvtdt = 71—
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e. First evaluate 03 @ I + I ® o3:

0 ]0)®]1), |1) ®|0) and the rest
o3@I+I®o3=4q 2 |0)®]0)
-2 [He()

Applying the above to the two-qubit unitary operator V is similar to what we got above for d). The area
for these 3 possible conditions is 0 and 4702 /v2. Then the eigenvalues for V are 68”92”2, 1,1, 68”92”2>.
If v = 49, the eigenvalues reduce to (i,1, 1,7) and give time ¢t = 7 /4.

2. Squeezing an Oscillator

Note: all operators can commute with themselves (or powers thereof)!

a. This is simple enough to prove as a general equality:

. asd EAn t el EATn oo _eAn . .
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and is thus unitary.

b. Find the Taylor expansion around € =0 :

Gle) = (eEB)Jr A (eeé> = (e_EB> A (e€B> = G(e) = G(0) + ¢G'(0) + - --

=A- eBe‘eBAeGB + ee*BABeEB

4= A-cBA+cABt-= A

c. Use the result from b) to speed up the process. Set € = /2 (e/2), A = a (a')

i § [0, @] = a+ S{alla.a] + [a,afa} =a - caf

=qf laf, a?

- 5 [a,a%] =l + S{ala',a] + (o', aJa) = @' ea

d. Manipulate the operators such that above expansions can be used:

= (14 €)pe

e. Subsituting r for € and using the limit definition of e,

. r\N. . PR r\NV .
jim = (1- ) é=eé and Jim = (14 ) pe=che



f. Subsitute:
(€Y = (015 () TES(r)[0) = (0]e"E|0) = =" (0[€]0) = 0 by definition
~ N —2r
(rl€2|r) = e~ (0]€2J0) =
(r[pe|r) = €"(0[pel0) = 0

2 e Lo
(rlpglr) = = (0laa’ + a'ajo) = e

1
(Olaa’ + a'alo) = 56—2’”

With this, we can calculate the variances:

(2é), = % and (Ape), = %

which implies that the minimum uncertainty in this state has been “squeezed” to AéAﬁg =1/2.

3. Anharmonic Oscillator

a. Rewrite the energy expression to express the peturbative term:
/ 4 1 A ~1\4
B}, — By = Klw{nl€!|n) = o (nl (@ + af)*|n)

In the expansion for (a + a)*, only terms with two raising and lowering operators would contribute;
all others would shift |rn) into an orthogonal state. Thus we get

(a+ah)* = A =aaatal +aataat +aatata + afaaa’ + ataata + atataa
aln) =vn+1n+1) afln)=vnln-1) aa'ln) = (n+1)|n)  a'aln) = nln)
ikhw(nﬂ\n) = ikhw{(n +)n+2)+(n+1)2+nn+1) +nn+1)+n+nn-1)}
= khw(n|&n) = ikzhw((%nz +6n 4+ 3)

b. Evaluate the above expression:

15 12
E{o:E{—E():E1+Zkhw—E0—zkm:hw+Zkhw
39 15 24
By = By = By = By + ~pkhw — By — —~khw = hw + —-khw
Ak) = By — Bl _ 3khw
El, huw + 3khw

This gives 3k after Taylor expanding with regards to k& around 0 and choosing the first term.



