Homework 8 Solutions

Ph 12b Winter 2010
March 13, 2010

A Barrier in a Well

a. For an even energy eigenstate ¢, ¢(z) = ¢(—z) and ¢'(x) = —¢'(—z). functions, From the previous
problem set, we know

lim ¢(z —€) — gz +¢) = ¢(07) —¢(07) =0 = ¢(07) =¢(07) = ¢(07), ¢(07) — $(0)

e—0

The derivative matching condition gives us

§(0%) — #(07) = 286(0) = 26/(0%) = 2A6(0) = 2

Similarly,
¢'(07) _

$(0-)

b. Assume the same functional form of ¢ as last time and use the boundary conditions ¢(a) = ¢(—a) =0
to get

o(z) = ¢p(—x) = Ce*® 4 D~ = Ae=*® L Be** = A=D, B=C
= ¢/(07) —¢'(07) = ikC — ikD — ik A+ ikB = 2ik(B — A) = 2A(A + B) = 2A¢(0)
ik + A
ik — A
—ika ika —ika ik + A ika
d(—a) = Ae” ™ 4 Beth® = Ae~i* +mAek =0
ik(e” ke 4 eha)y — A(emh — ¢F) =0 = 2ikcos(ka) + 2iAsin(ka) = A = —kcot(ka)
= Aa = —kacot(ka)

= B= A

c. For n odd, the delta barrier does not affect the wavefunction since since ¢(0) = 0. As Aa — oo,
sin(ka) — 0, meaning that k = or/a. Let o be the number of nodes; then o = n + 1/2 and

5o 22 (n+1\2
" 2ma? 2 '
For n even, the barrier has an effect at x = 0 which requires the creation of an additional node,
requiring that o =n 4 2/2 and
B, h2r? <n+2>2

= 2ma? 2

resulting in degeneracy.

d. The ground state must be even and is shown in red and the first excited state is in blue.
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Reflectionless Potential
Hip(z) = BE(z) = [22;1 + V(x)} G(kox) = Ev(kox)
k2 sechQ(kom)] d(kor) = E¢p(kow) 2z =kor = dz = kodx
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0
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2.
a.
I
{‘zmczxz T
R d* o, K, 2
I:_mdzg 0~ Eko sech (Z)} P(z) = Ed(z) = { a2
—— [f sech®z e** 4 il;:qﬁ(z)e“;z} — 2sech?z ¢(2)

z

— 2sech? (z)} (ik — tanh z)e“gz
= (k? + 2sech®2)¢(z) — 2sech®z ¢(z) = k2¢(2)
lim ik —tanhz =ik +1=A

b.
d2
{dzg
Z——00

c. We only have to show the limiting behavior of ik — tanh z:
lim ik — tanhz =ik — 1 =C
ik—1 (ik—1)(ik—1) k?+2ik—1
k2 +1
kY 42k +1

Z—r 00
d.
c_
A k41 (k+1)(k—1)
Cl? 1 _ _ _ _
T=|=| =— E? 4 2ik — 1)(k* — 2k — 1) = —
‘A Grg e F P2k - DO =2k - 1) = =
R=1-T=0
A ik+1 iR +1  —R+1 ~ -
_—=— = = = :1 =
C o1 R -1 —ro1 0T RELl= k=i

e. Solve:



d? d
g2 2sech?(2) | ¢(2) = e sech z tanh 2z — 2sech®z = sech®z — sech z tanh® z — 2sech®z
z z
= — sech z[sech®z 4 tanh? 2] = —sech z = k?¢(2)
. 2mE h2k2
k_2 _ — _ 0
2 om

3. Bound States in a Linear Potential

h? d?

A B2 o\ /3
Hy(z) = Byp(z) = [‘mdﬁ - le} ¢(r) = E¢(x)  for x>0 andy = (2mF) !

n2 "V W2 &2 (2mF\*? n2 \?
s dy= () = | ()T r () [t = Bow)

(h;i 2>1/3 {_d: " y} oly) = Boly) = {—j; + y] ¢(y) = Eoy)

b. For an even solution ¢'(0) = 0 and for an odd solution ¢(0) = 0. Then we get

. = [ Ai'"(E)=0 even solutions
o(@) ~ Aiaz +E) = 6(0) = { Ai(E) =0 odd solutions

We can see how the Airy solutions look like when shifted by the zeros: When n is odd, there are

-4 -04jy

(a) Odd: Red =1, Blue = 3, Purple =5 (b) Even: Red = 0, Blue = 2, Purple =4

o = n — 1/2 zeros on the right side excluding the one at the origin (see above plots). Then by
symmetry, the whole wavefunction has 20 + 1 = n nodes. When n is even, there are o = n/2 zeros
on the right side. By symmetry, the whole wavefunction has 20 = n nodes; thus the solutions have n
nodes.

2 1 E,
/ k(x)dx = (n + 2) classical turning points: z; = :|:7

1



k(x)? = ﬁ(En —-V(z)) = k(z) = ﬁ(En — Fz)
IO RS — om [ 2 o\ |54 oy, 1

We then get

n  WKB Prediction Airy Exact % difference
0 1.115 1.0188 +9.4%

1 2.320 2.3381 -0.8%

2 3.261 3.2482 +0.4%

3 4.082 4.0879 -0.14%

4 4.827 4.8201 +0.14%

5 5.517 5.5206 -0.06%

At n = 19, the 10th of Aj (2) is 12.8288. The predicted value of FE, = 12.8281, which is lower by
5x107°.



