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Preface

This is the 10th and final chapter of my book Quantum Information, based on the course

I have been teaching at Caltech since 1997. An early version of this chapter (originally

Chapter 5) has been available on the course website since 1998, but this version is

substantially revised and expanded.

The level of detail is uneven, as I’ve aimed to provide a gentle introduction, but I’ve

also tried to avoid statements that are incorrect or obscure. Generally speaking, I chose

to include topics that are both useful to know and relatively easy to explain; I had to

leave out a lot of good stuff, but on the other hand the chapter is already quite long.

My version of Quantum Shannon Theory is no substitute for the more careful treat-

ment in Wilde’s book [1], but it may be more suitable for beginners. This chapter

contains occasional references to earlier chapters in my book, but I hope it will be in-

telligible when read independently of other chapters, including the chapter on quantum

error-correcting codes.

This is a working draft of Chapter 10, which I will continue to update. See the URL

on the title page for further updates and drafts of other chapters. Please send an email

to preskill@caltech.edu if you notice errors.

Eventually, the complete book will be published by Cambridge University Press. I

hesitate to predict the publication date — they have been far too patient with me.
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Quantum Shannon Theory

Quantum information science is a synthesis of three great themes of 20th century

thought: quantum physics, computer science, and information theory. Up until now,

we have given short shrift to the information theory side of this trio, an oversight now

to be remedied.

A suitable name for this chapter might have been Quantum Information Theory, but

I prefer for that term to have a broader meaning, encompassing much that has already

been presented in this book. Instead I call it Quantum Shannon Theory, to emphasize

that we will mostly be occupied with generalizing and applying Claude Shannon’s great

(classical) contributions to a quantum setting. Quantum Shannon theory has several

major thrusts:

1. Compressing quantum information.

2. Transmitting classical and quantum information through noisy quantum channels.

3. Quantifying, characterizing, transforming, and using quantum entanglement.

A recurring theme unites these topics — the properties, interpretation, and applications

of von Neumann entropy.

My goal is to introduce some of the main ideas and tools of quantum Shannon theory,

but there is a lot we won’t cover. For example, we will mostly consider information theory

in an asymptotic setting, where the same quantum channel or state is used arbitrarily

many times, thus focusing on issues of principle rather than more practical questions

about devising efficient protocols.

10.1 Shannon for Dummies

Before we can understand von Neumann entropy and its relevance to quantum informa-

tion, we should discuss Shannon entropy and its relevance to classical information.

Claude Shannon established the two core results of classical information theory in his

landmark 1948 paper. The two central problems that he solved were:

1. How much can a message be compressed; i.e., how redundant is the information?

This question is answered by the “source coding theorem,” also called the “noiseless

coding theorem.”

2. At what rate can we communicate reliably over a noisy channel; i.e., how much

redundancy must be incorporated into a message to protect against errors? This

question is answered by the “noisy channel coding theorem.”
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Both questions concern redundancy – how unexpected is the next letter of the message,

on the average. One of Shannon’s key insights was that entropy provides a suitable way

to quantify redundancy.

I call this section “Shannon for Dummies” because I will try to explain Shannon’s ideas

quickly, minimizing distracting details. That way, I can compress classical information

theory to about 13 pages.

10.1.1 Shannon entropy and data compression

A message is a string of letters, where each letter is chosen from an alphabet of k

possible letters. We’ll consider an idealized setting in which the message is produced

by an “information source” which picks each letter by sampling from a probability

distribution

X := {x, p(x)}; (10.1)

that is, the letter has the value

x ∈ {0, 1, 2, . . . d−1} (10.2)

with probability p(x). If the source emits an n-letter message the particular string x =

x1x2 . . . xn occurs with probability

p(x1x2 . . . xn) =
n∏
i=1

p(xi). (10.3)

Since the letters are statistically independent, and each is produced by consulting the

same probability distribution X, we say that the letters are independent and identically

distributed, abbreviated i.i.d.We’ll useXn to denote the ensemble of n-letter messages in

which each letter is generated independently by sampling from X, and x⃗ = (x1x2 . . . xn)

to denote a string of letters.

Now consider long n-letter messages, n ≫ 1. We ask: is it possible to compress the

message to a shorter string of letters that conveys essentially the same information? The

answer is: Yes, it’s possible, unless the distribution X is uniformly random.

If the alphabet is binary, then each letter is either 0 with probability 1− p or 1 with

probability p, where 0 ≤ p ≤ 1. For n very large, the law of large numbers tells us

that typical strings will contain about n(1 − p) 0’s and about np 1’s. The number of

distinct strings of this form is of order the binomial coefficient
(
n
np

)
, and from the Stirling

approximation log n! = n log n− n+O(log n) we obtain

log

(
n

np

)
= log

(
n!

(np)! (n(1− p))!

)
≈ n log n− n− (np log np− np+ n(1− p) log n(1− p)− n(1− p))

= nH(p), (10.4)

where

H(p) = −p log p− (1− p) log(1− p) (10.5)

is the entropy function.

In this derivation we used the Stirling approximation in the appropriate form for

natural logarithms. But from now on we will prefer to use logarithms with base 2, which
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is more convenient for expressing a quantity of information in bits; thus if no base is

indicated, it will be understood that the base is 2 unless otherwise stated. Adopting this

convention in the expression for H(p), the number of typical strings is of order 2nH(p).

To convey essentially all the information carried by a string of n bits, it suffices to

choose a block code that assigns a nonnegative integer to each of the typical strings. This

block code needs to distinguish about 2nH(p) messages (all occurring with nearly equal

a priori probability), so we may specify any one of the messages using a binary string

with length only slightly longer than nH(p). Since 0 ≤ H(p) ≤ 1 for 0 ≤ p ≤ 1, and

H(p) = 1 only for p = 1
2 , the block code shortens the message for any p ̸= 1

2 (whenever

0 and 1 are not equally probable). This is Shannon’s result. The key idea is that we do

not need a codeword for every sequence of letters, only for the typical sequences. The

probability that the actual message is atypical becomes negligible asymptotically, i.e.,

in the limit n→ ∞.

Similar reasoning applies to the case where X samples from a d-letter alphabet. In

a string of n letters, x typically occurs about np(x) times, and the number of typical

strings is of order

n!∏
x(np(x))!

≃ 2nH(X), (10.6)

where we have again invoked the Stirling approximation and now

H(X) = −
∑
x

p(x) log2 p(x) = EX
[
log2

1

p(x)

]
. (10.7)

is the Shannon entropy (or simply entropy) of the ensemble X = {x, p(x)}, and EX [ · ]
denotes the expectation value defined by this ensemble. Adopting a block code that

assigns integers to the typical sequences, the information in a string of n letters can

be compressed to about nH(X) bits. In this sense a letter x chosen from the ensemble

carries, on the average, H(X) bits of information.

It is useful to restate this reasoning more carefully using the strong law of large

numbers, which asserts that a sample average for a random variable almost certainly

converges to its expected value in the limit of many trials. If we sample from the dis-

tribution Y = {y, p(y)} n times, let yi, i ∈ {1, 2, . . . , n} denote the ith sample, and

let

µ[Y ] = EY [y] =
∑
y

y p(y) (10.8)

denote the expected value of y. Then for any positive ε and δ there is a positive integer

N such that ∣∣∣∣∣ 1n
n∑
i=1

yi − µ[Y ]

∣∣∣∣∣ ≤ δ (10.9)

with probability at least 1−ε for all n ≥ N . We can apply this statement to the random

variable log2 p(x). Let us say that a sequence of n letters is δ-typical if

H(X)− δ ≤ − 1

n
log2 p(x1x2 . . . xn) ≤ H(X) + δ; (10.10)

then the strong law of large numbers says that for any ε, δ > 0 and n sufficiently large,

an n-letter sequence will be δ-typical with probability ≥ 1− ε.
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Since each δ-typical n-letter sequence x⃗ occurs with probability p(x⃗) satisfying

pmin = 2−n(H+δ) ≤ p(x⃗) ≤ 2−n(H−δ) = pmax, (10.11)

we may infer upper and lower bounds on the number Ntyp(ε, δ, n) of typical sequences:

Ntyp pmin ≤
∑

typical x

p(x) ≤ 1, Ntyp pmax ≥
∑

typical x

p(x) ≥ 1− ε, (10.12)

implies

2n(H+δ) ≥ Ntyp(ε, δ, n) ≥ (1− ε)2n(H−δ). (10.13)

Therefore, we can encode all typical sequences using a block code with length n(H + δ)

bits. That way, any message emitted by the source can be compressed and decoded

successfully as long as the message is typical; the compression procedure achieves a

success probability psuccess ≥ 1− ε, no matter how the atypical sequences are decoded.

What if we try to compress the message even further, say to H(X)−δ′ bits per letter,
where δ′ is a constant independent of the message length n? Then we’ll run into trouble,

because there won’t be enough codewords to cover all the typical messages, and we

won’t be able to decode the compressed message with negligible probability of error.

The probability psuccess of successfully decoding the message will be bounded above by

psuccess ≤ 2n(H−δ′)2−n(H−δ) + ε = 2−n(δ
′−δ) + ε. (10.14)

We can correctly decode only 2n(H−δ′) typical messages, each occurring with probability

no higher than 2−n(H−δ); we add ε, an upper bound on the probability of an atypical

message, allowing optimistically for the possibility that we somehow manage to decode

the atypical messages correctly. Since we may choose ε and δ as small as we please, this

success probability becomes small as n→ ∞, if δ′ is a positive constant.

The number of bits per letter encoding the compressed message is called the rate of

the compression code, and we say a rate R is achievable asymptotically (as n → ∞) if

there is a sequence of codes with rate at least R and error probability approaching zero

in the limit of large n. To summarize our conclusion, we have found that

Compression Rate = H(X) + o(1) is achievable,

Compression Rate = H(X)− Ω(1) is not achievable, (10.15)

where o(1) denotes a positive quantity which may be chosen as small as we please, and

Ω(1) denotes a positive constant. This is Shannon’s source coding theorem.

We have not discussed at all the details of the compression code. We might imagine

a huge lookup table which assigns a unique codeword to each message and vice versa,

but because such a table has size exponential in n it is quite impractical for compressing

and decompressing long messages. It is fascinating to study how to make the coding

and decoding efficient while preserving a near optimal rate of compression, and quite

important, too, if we really want to compress something. But this practical aspect of

classical compression theory is beyond the scope of this book.

10.1.2 Joint typicality, conditional entropy, and mutual information

The Shannon entropy quantifies my ignorance per letter about the output of an infor-

mation source. If the source X produces an n-letter message, then n(H(X) + o(1)) bits

suffice to convey the content of the message, while n(H(X)− Ω(1)) bits do not suffice.
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Two information sources X and Y can be correlated. Letters drawn from the sources

are governed by a joint distribution XY = {(x, y), p(x, y)}, in which a pair of letters

(x, y) appears with probability p(x, y). The sources are independent if p(x, y) = p(x)p(y),

but correlated otherwise. If XY is a joint distribution, we use X to denote the marginal

distribution, defined as

X =

{
x, p(x) =

∑
y

p(x, y)

}
, (10.16)

and similarly for Y . If X and Y are correlated, then by reading a message generated

by Y n I reduce my ignorance about a message generated by Xn, which should make it

possible to compress the output of X further than if I did not have access to Y .

To make this idea more precise, we use the concept of jointly typical sequences. Sam-

pling from the distribution XnY n, that is, sampling n times from the joint distribution

XY , produces a message (x⃗, y⃗) = (x1x2 . . . xn, y1y2 . . . yn) with probability

p(x⃗, y⃗) = p(x1, y1)p(x2, y2) . . . p(xn, yn). (10.17)

Let us say that (x⃗, y⃗) drawn from XnY n is jointly δ-typical if

2−n(H(X)+δ) ≤ p(x⃗) ≤ 2−n(H(X)−δ),

2−n(H(Y )+δ) ≤ p(y⃗) ≤ 2−n(H(Y )−δ),

2−n(H(XY )+δ) ≤ p(x⃗, y⃗) ≤ 2−n(H(XY )−δ). (10.18)

Then, applying the strong law of large numbers simultaneously to the three distributions

Xn, Y n, and XnY n, we infer that for ε, δ > 0 and n sufficiently large, a sequence drawn

from XnY n will be jointly δ-typical with probability ≥ 1− ε. Using Bayes’ rule, we can

then obtain upper and lower bounds on the conditional probability p(x⃗|y⃗) for jointly

typical sequences:

p(x⃗|y⃗) = p(x⃗, y⃗)

p(y⃗)
≥ 2−n(H(XY )+δ)

2−n(H(Y )−δ) = 2−n(H(X|Y )+2δ),

p(x⃗|y⃗) = p(x⃗, y⃗)

p(y⃗)
≤ 2−n(H(XY )−δ)

2−n(H(Y )+δ)
= 2−n(H(X|Y )−2δ). (10.19)

Here we have introduced the quantity

H(X|Y ) = H(XY )−H(Y ) = EXY [− log p(x, y) + log p(y)] = EXY [− log p(x|y)],
(10.20)

which is called the conditional entropy of X given Y .

The conditional entropy quantifies my remaining ignorance about x once I know y.

From eq.(10.19) we see that if (x⃗, y⃗) is jointly typical (as is the case with high probability

for n large), then the number of possible values for x⃗ compatible with the known value of

y⃗ is no more than 2n(H(X|Y )+2δ); hence we can convey x⃗ with a high success probability

using only H(X|Y ) + o(1) bits per letter. On the other hand we can’t do much better,

because if we use only 2n(H(X|Y )−δ′) codewords, we are limited to conveying reliably

no more than a fraction 2−n(δ
′−2δ) of all the jointly typical messages. To summarize,

H(X|Y ) is the number of additional bits per letter needed to specify both x⃗ and y⃗ once

y⃗ is known. Similarly, H(Y |X) is the number of additional bits per letter needed to

specify both x⃗ and y⃗ when x⃗ is known.
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The information about X that I gain when I learn Y is quantified by how much the

number of bits per letter needed to specify X is reduced when Y is known. This is

I(X;Y ) ≡ H(X)−H(X|Y )

= H(X) +H(Y )−H(XY )

= H(Y )−H(Y |X), (10.21)

which is called the mutual information. The mutual information I(X;Y ) quantifies how

X and Y are correlated, and is symmetric under interchange of X and Y : I find out

as much about X by learning Y as about Y by learning X. Learning Y never reduces

my knowledge of X, so I(X;Y ) is obviously nonnegative, and indeed the inequality

H(X) ≥ H(X|Y ) ≥ 0 follows easily from the concavity of the log function.

Of course, if X and Y are completely uncorrelated, we have p(x, y) = p(x)p(y), and

I(X;Y ) ≡
〈
log

p(x, y)

p(x)p(y)

〉
= 0; (10.22)

we don’t find out anything about X by learning Y if there is no correlation between X

and Y .

10.1.3 Distributed source coding

To sharpen our understanding of the operational meaning of conditional entropy, con-

sider this situation: Suppose that the joint distribution XY is sampled n times, where

Alice receives the n-letter message x⃗ and Bob receives the n-letter message y⃗. Now Alice

is to send a message to Bob which will enable Bob to determine x⃗ with high success

probability, and Alice wants to send as few bits to Bob as possible. This task is harder

than in the scenario considered in §10.1.2, where we assumed that the encoder and the

decoder share full knowledge of y⃗, and can choose their code for compressing x⃗ accord-

ingly. It turns out, though, that even in this more challenging setting Alice can compress

the message she sends to Bob down to n (H(X|Y ) + o(1)) bits, using a method called

Slepian-Wolf coding.

Before receiving (x⃗, y⃗), Alice and Bob agree to sort all the possible n-letter messages

that Alice might receive into 2nR possible bins of equal size, where the choice of bins

is known to both Alice and Bob. When Alice receives x⃗, she sends nR bits to Bob,

identifying the bin that contains x⃗. After Bob receives this message, he knows both y⃗

and the bin containing x⃗. If there is a unique message in that bin which is jointly typical

with y⃗, Bob decodes accordingly. Otherwise, he decodes arbitrarily. This procedure can

fail either because x⃗ and y⃗ are not jointly typical, or because there is more than one

message in the bin which is jointly typical with y⃗. Otherwise, Bob is sure to decode

correctly.

Since x⃗ and y⃗ are jointly typical with high probability, the compression scheme works

if it is unlikely for a bin to contain an incorrect message which is jointly typical with y⃗.

If y⃗ is typical, what can we say about the number Ntyp|y⃗ of messages x⃗ that are jointly

typical with y⃗? Using eq.(10.19), we have

1 ≥
∑

typical x⃗|y⃗

p(x⃗|y⃗) ≥ Ntyp|y⃗ 2−n(H(X|Y )+2δ), (10.23)

and thus

Ntyp|y⃗ ≤ 2n(H(X|Y )+2δ). (10.24)
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Now, to estimate the probability of a decoding error, we need to specify how the bins

are chosen. Let’s assume the bins are chosen uniformly at random, or equivalently, let’s

consider averaging uniformly over all codes that divide the length-n strings into 2nR

bins of equal size. Then the probability that a particular bin contains a message jointly

typical with a specified y⃗ purely by accident is bounded above by

2−nRNtyp|y⃗ ≤ 2−n(R−H(X|Y )−2δ). (10.25)

We conclude that if Alice sends R bits to Bob per each letter of the message x, where

R = H(X|Y ) + o(1), (10.26)

then the probability of a decoding error vanishes in the limit n→ ∞, at least when we

average uniformly over all codes. Surely, then, there must exist a particular sequence of

codes Alice and Bob can use to achieve the rate R = H(X|Y ) + o(1), as we wanted to

show.

In this scenario, Alice and Bob jointly know (x, y), but initially neither Alice nor Bob

has access to all their shared information. The goal is to merge all the information on

Bob’s side with minimal communication from Alice to Bob, and we have found that

H(X|Y ) + o(1) bits of communication per letter suffice for this purpose. Similarly, the

information can be merged on Alice’s side using H(Y |X) + o(1) bits of communica-

tion per letter from Bob to Alice. Note that this argument, based on averaging over

codes, is nonconstructive; it establishes the existence of a code that achieves the stated

communication rate without exhibiting any such code.

10.1.4 Relative entropy and hypothesis testing

Here we briefly introduce another useful entropic quantity, the relative entropy (also

called the Kullback-Leibler divergence), which arises in the context of hypothesis testing.

Suppose we sample n times from the distribution X = {x, p(x)}, where n is very large,

but we mistakenly believe that we are sampling instead from a different distribution

Y = {x, q(x)}. With enough samples, we should be able to rule out this incorrect

hypothesis with high probability.

To see how this works with minimal distracting details, suppose that n is so large

that the sequence drawn from the distribution is δ-typical with probability 1− ε where

δ and ε are negligibly small. That is, assume that when we sample n times from X, the

letter x is drawn exactly np(x) times. Under our hypothesis, then, in which x occurs

with probability q(x), the observed sequence x⃗ has probability

P (x⃗) =
d−1∏
x=0

q(x)np(x) =⇒ logP (x⃗) = n
d−1∑
x=0

p(x) log q(x) = −nEp[− log q(x)]; (10.27)

that is,

P (x⃗) = 2−nEp[− log q(x)]. (10.28)

The quantity Ep[− log q(x)] is called the cross entropy of q relative to p.

This expression P (x⃗) gives the probability for any particular typical sequence x⃗, and

the total number of typical sequences is 2nH(X). Therefore, under our hypothesis, the

total probability of the observed frequencies, in which the letter x occurs np(x) times,

is

Prob = 2nH(X)P (x⃗) = 2−nD(p∥q), (10.29)
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where

D(p∥q) =
∑
x

p(x) (log p(x)− log q(x)) = Ep
[
log

p(x)

q(x)

]
, (10.30)

which is called the relative entropy of p with respect to q.

We see that the relative entropy governs the confidence with which we can rule out the

incorrect hypothesis when n is large; in this sense it is a measure of the distinguishability

of the two distributions p(x) and q(x). It is not, however, a metric on probability vectors,

because it is asymmetric between p and q. This asymmetry occurs because p and q have

different roles in the hypothesis testing scenario: p is the true distribution and q is the

hypothetical one.

Note that since Prob = 2−nD(p∥q) is a probability and therefore no larger than 1, it

follows that the relative entropy is nonnegative,

D(p∥q) ≥ 0. (10.31)

10.1.5 The noisy channel coding theorem

Suppose Alice wants to send a message to Bob, but the communication channel linking

Alice and Bob is noisy. Each time they use the channel, Bob receives the letter y with

probability p(y|x) if Alice sends the letter x. Using the channel n≫ 1 times, Alice hopes

to transmit a long message to Bob.

Alice and Bob realize that to communicate reliably despite the noise they should use

some kind of code. For example, Alice might try sending the same bit k times, with

Bob using a majority vote of the k noisy bits he receives to decode what Alice sent. One

wonders: for a given channel, is it possible to ensure perfect transmission asymptotically,

i.e., in the limit where the number of channel uses n→ ∞? And what can be said about

the rate of the code; that is, how many bits must be sent per letter of the transmitted

message?

Shannon answered these questions. He showed that any channel can be used for per-

fectly reliable communication at an asymptotic nonzero rate, as long as there is some

correlation between the channel’s input and its output. Furthermore, he found a useful

formula for the optimal rate that can be achieved. These results are the content of the

noisy channel coding theorem.

Capacity of the binary symmetric channel.

To be concrete, suppose we use the binary alphabet {0, 1}, and the binary symmetric

channel; this channel acts on each bit independently, flipping its value with probabil-

ity p, and leaving it intact with probability 1 − p. Thus the conditional probabilities

characterizing the channel are

p(0|0) = 1− p, p(0|1) = p,

p(1|0) = p, p(1|1) = 1− p.
(10.32)

We want to construct a family of codes with increasing block size n, such that the

probability of a decoding error goes to zero as n → ∞. For each n, the code contains

2k codewords among the 2n possible strings of length n. The rate R of the code, the

number of encoded data bits transmitted per physical bit carried by the channel, is

R =
k

n
. (10.33)
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To protect against errors, we should choose the code so that the codewords are as “far

apart” as possible. For given values of n and k, we want to maximize the number of bits

that must be flipped to change one codeword to another, the Hamming distance between

the two codewords. For any n-bit input message, we expect about np of the bits to flip

— the input diffuses into one of about 2nH(p) typical output strings, occupying an “error

sphere” of “Hamming radius” np about the input string. To decode reliably, we want

to choose our input codewords so that the error spheres of two different codewords do

not overlap substantially. Otherwise, two different inputs will sometimes yield the same

output, and decoding errors will inevitably occur. To avoid such decoding ambiguities,

the total number of strings contained in all 2k = 2nR error spheres should not exceed

the total number 2n of bits in the output message; we therefore require

2nH(p)2nR ≤ 2n (10.34)

or

R ≤ 1−H(p) := C(p). (10.35)

If transmission is highly reliable, we cannot expect the rate of the code to exceed C(p).

But is the rate R = C(p) actually achievable asymptotically?

In fact transmission with R = C − o(1) and negligible decoding error probability is

possible. Perhaps Shannon’s most ingenious idea was that this rate can be achieved by

an average over “random codes.” Though choosing a code at random does not seem like

a clever strategy, rather surprisingly it turns out that random coding achieves as high

a rate as any other coding scheme in the limit n → ∞. Since C is the optimal rate for

reliable transmission of data over the noisy channel it is called the channel capacity.

Suppose that X is the uniformly random ensemble for a single bit (either 0 with p = 1
2

or 1 with p = 1
2), and that we sample from Xn a total of 2nR times to generate 2nR

“random codewords.” The resulting code is known by both Alice and Bob. To send nR

bits of information, Alice chooses one of the codewords and sends it to Bob by using

the channel n times. To decode the n-bit message he receives, Bob draws a “Hamming

sphere” with “radius” slightly larger than np, containing

2n(H(p)+δ) (10.36)

strings. If this sphere contains a unique codeword, Bob decodes the message accordingly.

If the sphere contains more than one codeword, or no codewords, Bob decodes arbitrarily.

How likely is a decoding error? For any positive δ, Bob’s decoding sphere is large

enough that it is very likely to contain the codeword sent by Alice when n is sufficiently

large. Therefore, we need only worry that the sphere might contain another codeword

just by accident. Since there are altogether 2n possible strings, Bob’s sphere contains a

fraction

f =
2n(H(p)+δ)

2n
= 2−n(C(p)−δ), (10.37)

of all the strings. Because the codewords are uniformly random, the probability that

Bob’s sphere contains any particular codeword aside from the one sent by Alice is f ,

and the probability that the sphere contains any one of the 2nR − 1 invalid codewords

is no more than

2nRf = 2−n(C(p)−R−δ). (10.38)



10 Quantum Shannon Theory

Since δ may be as small as we please, we may choose R = C(p) − c where c is any

positive constant, and the decoding error probability will approach zero as n→ ∞.

When we speak of codes chosen at random, we really mean that we are averaging over

many possible codes. The argument so far has shown that the average probability of error

is small, where we average over the choice of random code, and for each specified code

we also average over all codewords. It follows that there must be a particular sequence of

codes such that the average probability of error (when we average over the codewords)

vanishes in the limit n → ∞. We would like a stronger result – that the probability of

error is small for every codeword.

To establish the stronger result, let pi denote the probability of a decoding error when

codeword i is sent. For any positive ε and sufficiently large n, we have demonstrated the

existence of a code such that

1

2nR

2nR∑
i=1

pi ≤ ε. (10.39)

Let N2ε denote the number of codewords with pi ≥ 2ε. Then we infer that

1

2nR
(N2ε)2ε ≤ ε or N2ε ≤ 2nR−1; (10.40)

we see that we can throw away at most half of the codewords, to achieve pi ≤ 2ε for

every codeword. The new code we have constructed has

Rate = R− 1

n
, (10.41)

which approaches R as n → ∞. We have seen, then, that the rate R = C(p) − o(1) is

asymptotically achievable with negligible probability of error, where C(p) = 1−H(p).

Mutual information as an achievable rate.

Now consider how to apply this random coding argument to more general alphabets and

channels. The channel is characterized by p(y|x), the conditional probability that the

letter y is received when the letter x is sent. We fix an ensemble X = {x, p(x)} for the

input letters, and generate the codewords for a length-n code with rate R by sampling

2nR times from the distribution Xn; the code is known by both the sender Alice and the

receiver Bob. To convey an encoded nR-bit message, one of the 2nR n-letter codewords

is selected and sent by using the channel n times. The channel acts independently on the

n letters, governed by the same conditional probability distribution p(y|x) each time it

is used. The input ensemble X, together with the conditional probability characterizing

the channel, determines the joint ensemble XY for each letter sent, and therefore the

joint ensemble XnY n for the n uses of the channel.

To define a decoding procedure, we use the notion of joint typicality introduced in

§10.1.2. When Bob receives the n-letter output message y⃗, he determines whether there

is an n-letter input codeword x⃗ jointly typical with y⃗. If such x⃗ exists and is unique,

Bob decodes accordingly. If there is no x⃗ jointly typical with y⃗, or more than one such

x⃗, Bob decodes arbitrarily.

How likely is a decoding error? For any positive ε and δ, the (x⃗, y⃗) drawn from XnY n

is jointly δ-typical with probability at least 1− ε if n is sufficiently large. Therefore, we

need only worry that there might more than one codeword jointly typical with y⃗.

Suppose that Alice samples Xn to generate a codeword x⃗, which she sends to Bob

using the channel n times. Then Alice samples Xn a second time, producing another
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codeword x⃗′. With probability close to one, both y⃗ and x⃗′ are δ-typical. But what is the

probability that x⃗′ is jointly δ-typical with y⃗?

Because the samples are independent, the probability of drawing these two codewords

factorizes as p(x⃗′, x⃗) = p(x⃗′)p(x⃗), and likewise the channel output y⃗ when the first

codeword is sent is independent of the second channel input x⃗′, so p(x⃗′, y⃗) = p(x⃗′)p(y⃗).

From eq.(10.18) we obtain an upper bound on the number Nj.t. of jointly δ-typical (x⃗, y⃗):

1 ≥
∑

j.t. (x⃗,y⃗)

p(x⃗, y⃗) ≥ Nj.t. 2
−n(H(XY )+δ) =⇒ Nj.t. ≤ 2n(H(XY )+δ). (10.42)

We also know that each δ-typical x⃗′ occurs with probability p(x⃗′) ≤ 2−n(H(X)−δ) and that

each δ-typical y⃗ occurs with probability p(y⃗) ≤ 2−n(H(Y )−δ). Therefore, the probability

that x⃗′ and y⃗ are jointly δ-typical is bounded above by∑
j.t. (x⃗′,y⃗)

p(x⃗′)p(y⃗) ≤ Nj.t. 2
−n(H(X)−δ)2−n(H(Y )−δ)

≤ 2n(H(XY )+δ)2−n(H(X)−δ)2−n(H(Y )−δ)

= 2−n(I(X;Y )−3δ). (10.43)

If there are 2nR codewords, all generated independently by sampling Xn, then the prob-

ability that any other codeword besides x⃗ is jointly typical with y⃗ is bounded above

by

2nR2−n(I(X;Y )−3δ) = 2n(R−I(X;Y )+3δ). (10.44)

Since ε and δ are as small as we please, we may choose R = I(X;Y )− c, where c is any

positive constant, and the decoding error probability will approach zero as n→ ∞.

So far we have shown that the error probability is small when we average over codes

and over codewords. To complete the argument we use the same reasoning as in our

discussion of the capacity of the binary symmetric channel. There must exist a particular

sequence of codes with zero error probability in the limit n→ ∞, when we average over

codewords. And by pruning the codewords, reducing the rate by a negligible amount,

we can ensure that the error probability is small for every codeword. We conclude that

the rate

R = I(X;Y )− o(1) (10.45)

is asymptotically achievable with negligible probability of error. This result provides a

concrete operational interpretation for the mutual information I(X;Y ); it is the infor-

mation per letter we can transmit over the channel, supporting the heuristic claim that

I(X;Y ) quantifies the information we gain about X when we have access to Y .

The mutual information I(X;Y ) depends not only on the channel’s conditional prob-

ability p(y|x) but also on the a priori probability p(x) defining the codeword ensemble

X. The achievability argument for random coding applies for any choice of X, so we

have demonstrated that errorless transmission over the noisy channel is possible for any

rate R strictly less than

C := max
X

I(X;Y ). (10.46)

This quantity C is called the channel capacity; it depends only on the conditional prob-

abilities p(y|x) that define the channel.
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Upper bound on the capacity.

We have now shown that any rate R < C is achievable, but can R exceed C with

the error probability still approaching 0 for large n? To see that a rate for errorless

transmission exceeding C is not possible, we reason as follows.

Consider any code with 2nR codewords, and consider the uniform ensemble on the

codewords, denoted X̃n, in which each codeword occurs with probability 2−nR. Evi-

dently, then,

H(X̃n) = nR. (10.47)

Sending the codewords through n uses of the channel we obtain an ensemble Ỹ n of

output states, and a joint ensemble X̃nỸ n.

Because the channel acts on each letter independently, the conditional probability for

n uses of the channel factorizes:

p(y1y2 · · · yn|x1x2 · · ·xn) = p(y1|x1)p(y2|x2) · · · p(yn|xn), (10.48)

and it follows that the conditional entropy satisfies

H(Ỹ n|X̃n) = ⟨− log p(y⃗|x⃗)⟩ =
∑
i

⟨− log p(yi|xi)⟩

=
∑
i

H(Ỹi|X̃i), (10.49)

where X̃i and Ỹi are the marginal probability distributions for the ith letter deter-

mined by our distribution on the codewords. Because Shannon entropy is subadditive,

H(XY ) ≤ H(X) +H(Y ), we have

H(Ỹ n) ≤
∑
i

H(Ỹi), (10.50)

and therefore

I(Ỹ n; X̃n) = H(Ỹ n)−H(Ỹ n|X̃n)

≤
∑
i

(H(Ỹi)−H(Ỹi|X̃i))

=
∑
i

I(Ỹi; X̃i) ≤ nC. (10.51)

The mutual information of the messages sent and received is bounded above by the

sum of the mutual information per letter, and the mutual information for each letter is

bounded above by the capacity, because C is defined as the maximum of I(X;Y ) over

all input ensembles.

Recalling the symmetry of mutual information, we have

I(X̃n; Ỹ n) = H(X̃n)−H(X̃n|Ỹ n)

= nR−H(X̃n|Ỹ n) ≤ nC. (10.52)

Now, if we can decode reliably as n → ∞, this means that the input codeword is

completely determined by the signal received, or that the conditional entropy of the

input (per letter) must get small

1

n
H(X̃n|Ỹ n) → 0. (10.53)
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If errorless transmission is possible, then, eq. (10.52) becomes

R ≤ C + o(1), (10.54)

in the limit n→ ∞. The asymptotic rate cannot exceed the capacity. In Exercise 10.15,

you will sharpen the statement eq.(10.53), showing that

1

n
H(X̃n|Ỹ n) ≤ 1

n
H2(pe) + peR, (10.55)

where pe denotes the decoding error probability, and H2(pe) = −pe log2 pe − (1 −
pe) log2(1− pe) .

We have now seen that the capacity C is the highest achievable rate of communication

through the noisy channel, where the probability of error goes to zero as the number of

letters in the message goes to infinity. This is Shannon’s noisy channel coding theorem.

What is particularly remarkable is that, although the capacity is achieved by messages

that are many letters in length, we have obtained a single-letter formula for the capacity,

expressed in terms of the optimal mutual information I(X;Y ) for just a single use of

the channel.

The method we used to show that R = C − o(1) is achievable, averaging over random

codes, is not constructive. Since a random code has no structure or pattern, encoding

and decoding are unwieldy, requiring an exponentially large code book. Nevertheless, the

theorem is important and useful, because it tells us what is achievable, and not achiev-

able, in principle. Furthermore, since I(X;Y ) is a concave function of X = {x, p(x)}
(with {p(y|x)} fixed), it has a unique local maximum, and C can often be computed

(at least numerically) for channels of interest. Finding codes which can be efficiently

encoded and decoded, and come close to achieving the capacity, is a very interesting

pursuit, but beyond the scope of our lightning introduction to Shannon theory.

10.2 Von Neumann Entropy

In classical information theory, we often consider a source that prepares messages of

n letters (n ≫ 1), where each letter is drawn independently from an ensemble X =

{x, p(x)}. We have seen that the Shannon entropy H(X) is the number of incompressible

bits of information carried per letter (asymptotically as n→ ∞).

We may also be interested in correlations among messages. The correlations between

two ensembles of letters X and Y are characterized by conditional probabilities p(y|x).
We have seen that the mutual information

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (10.56)

is the number of bits of information per letter about X that we can acquire by reading Y

(or vice versa). If the p(y|x)’s characterize a noisy channel, then, I(X;Y ) is the amount

of information per letter that can be transmitted through the channel (given the a priori

distribution X for the channel inputs).

We would like to generalize these considerations to quantum information. We may

imagine a source that prepares messages of n letters, but where each letter is chosen

from an ensemble of quantum states. The signal alphabet consists of a set of quantum

states {ρ(x)}, each occurring with a specified a priori probability p(x).

As we discussed at length in Chapter 2, the probability of any outcome of any mea-

surement of a letter chosen from this ensemble, if the observer has no knowledge about
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which letter was prepared, can be completely characterized by the density operator

ρ =
∑
x

p(x)ρ(x); (10.57)

for a POVM E = {Ea}, the probability of outcome a is

Prob(a) = tr(Eaρ). (10.58)

For this (or any) density operator, we may define the von Neumann entropy

H(ρ) = −tr(ρ logρ). (10.59)

Of course, we may choose an orthonormal basis {|a⟩} that diagonalizes ρ,

ρ =
∑
a

λa|a⟩⟨a|; (10.60)

the vector of eigenvalues λ(ρ) is a probability distribution, and the von Neumann entropy

of ρ is just the Shannon entropy of this distribution,

H(ρ) = H(λ(ρ)). (10.61)

If ρA is the density operator of system A, we will sometimes use the notation

H(A) := H(ρA). (10.62)

Our convention is to denote quantum systems with A,B,C, . . . and classical probability

distributions with X,Y, Z, . . . .

In the case where the signal alphabet {|φ(x)⟩, p(x)} consists of mutually orthogonal

pure states, the quantum source reduces to a classical one; all of the signal states can be

perfectly distinguished, and H(ρ) = H(X), where X is the classical ensemble {x, p(x)}.
The quantum source is more interesting when the signal states {ρ(x)} are not mutually

commuting. We will argue that the von Neumann entropy quantifies the incompressible

information content of the quantum source (in the case where the signal states are pure)

much as the Shannon entropy quantifies the information content of a classical source.

Indeed, we will find that von Neumann entropy plays multiple roles. It quantifies

not only the quantum information content per letter of the pure-state ensemble (the

minimum number of qubits per letter needed to reliably encode the information) but

also its classical information content (the maximum amount of information per letter—

in bits, not qubits—that we can gain about the preparation by making the best possible

measurement). And we will see that von Neumann entropy enters quantum information

in yet other ways — for example, quantifying the entanglement of a bipartite pure state.

Thus quantum information theory is largely concerned with the interpretation and uses

of von Neumann entropy, much as classical information theory is largely concerned with

the interpretation and uses of Shannon entropy.

In fact, the mathematical machinery we need to develop quantum information theory

is very similar to Shannon’s mathematics (typical sequences, random coding, . . . ); so

similar as to sometimes obscure that the conceptual context is really quite different.

The central issue in quantum information theory is that nonorthogonal quantum states

cannot be perfectly distinguished, a feature with no classical analog.
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10.2.1 Mathematical properties of H(ρ)

There are a handful of properties of the von Neumann entropyH(ρ) which are frequently

useful, many of which are closely analogous to corresponding properties of the Shannon

entropy H(X). Proofs of some of these are Exercises 10.1, 10.2, 10.3.

1. Pure states. A pure state ρ = |φ⟩⟨φ| has H(ρ) = 0.

2. Unitary invariance. The entropy is unchanged by a unitary change of basis,

H(UρU−1) = H(ρ), (10.63)

because H(ρ) depends only on the eigenvalues of ρ.

3. Maximum. If ρ has d nonvanishing eigenvalues, then

H(ρ) ≤ log d, (10.64)

with equality when all the nonzero eigenvalues are equal. The entropy is maximized

when the quantum state is maximally mixed.

4. Concavity. For λ1, λ2, · · · , λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1,

H(λ1ρ1 + · · ·+ λnρn) ≥ λ1H(ρ1) + · · ·+ λnH(ρn). (10.65)

The von Neumann entropy is larger if we are more ignorant about how the state was

prepared. This property is a consequence of the concavity of the log function.

5. Subadditivity. Consider a bipartite system AB in the state ρAB. Then

H(AB) ≤ H(A) +H(B) (10.66)

(where ρA = trB (ρAB) and ρB = trA (ρAB)), with equality only for ρAB = ρA⊗ρB.

Thus, entropy is additive for uncorrelated systems, but otherwise the entropy of the

whole is less than the sum of the entropy of the parts. This property is the quantum

generalization of subadditivity of Shannon entropy:

H(XY ) ≤ H(X) +H(Y ). (10.67)

6. Bipartite pure states. If the state ρAB of the bipartite system AB is pure, then

H(A) = H(B), (10.68)

because ρA and ρB have the same nonzero eigenvalues.

7. Quantum mutual information. As in the classical case, we define the mutual

information of two quantum systems as

I(A;B) = H(A) +H(B)−H(AB), (10.69)

which is nonnegative because of the subadditivity of von Neumann entropy, and zero

only for a product state ρAB = ρA ⊗ ρB.

8. Triangle inequality (Araki-Lieb inequality). For a bipartite system,

H(AB) ≥ |H(A)−H(B)|. (10.70)

To derive the triangle inequality, consider the tripartite pure state |ψ⟩ABC which

purifies ρAB = trC (|ψ⟩⟨ψ|). Since |ψ⟩ is pure, H(A) = H(BC) and H(C) = H(AB);

applying subadditivity to BC yields H(A) ≤ H(B) +H(C) = H(B) +H(AB). The

same inequality applies with A and B interchanged, from which we obtain eq.(10.70).
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The triangle inequality contrasts sharply with the analogous property of Shannon en-

tropy,

H(XY ) ≥ H(X), H(Y ). (10.71)

The Shannon entropy of just part of a classical bipartite system cannot be greater

than the Shannon entropy of the whole system. Not so for the von Neumann en-

tropy! For example, in the case of an entangled bipartite pure quantum state, we have

H(A) = H(B) > 0, while H(AB) = 0. The entropy of the global system vanishes be-

cause our ignorance is minimal — we know as much about AB as the laws of quantum

physics will allow. But we have incomplete knowledge of the parts A and B, with our

ignorance quantified by H(A) = H(B). For a quantum system, but not for a classical

one, information can be encoded in the correlations among the parts of the system, yet

be invisible when we look at the parts one at a time.

Equivalently, a property that holds classically but not quantumly is

H(X|Y ) = H(XY )−H(Y ) ≥ 0. (10.72)

The Shannon conditional entropy H(X|Y ) quantifies our remaining ignorance about X

when we know Y , and equals zero when knowing Y makes us certain about X. On the

other hand, the von Neumann conditional entropy,

H(A|B) = H(AB)−H(B), (10.73)

can be negative; in particular we have H(A|B) = −H(A) = −H(B) < 0 if ρAB is an

entangled pure state. How can it make sense that “knowing” the subsystem B makes us

“more than certain” about the subsystem A? We’ll return to this intriguing question in

§10.8.2.
When X and Y are perfectly correlated, then H(XY ) = H(X) = H(Y ); the

conditional entropy is H(X|Y ) = H(Y |X) = 0 and the mutual information is

I(X;Y ) = H(X). In contrast, for a bipartite pure state of AB, the quantum state

for which we may regard A and B as perfectly correlated, the mutual information is

I(A;B) = 2H(A) = 2H(B). In this sense the quantum correlations are stronger than

classical correlations.

10.2.2 Mixing, measurement, and entropy

The Shannon entropy also has a property called Schur concavity, which means that if

X = {x, p(x)} and Y = {y, q(y)} are two ensembles such that p ≺ q, thenH(X) ≥ H(Y ).

Recall that p ≺ q (q majorizes p) means that “p is at least as random as q” in the sense

that p = Dq for some doubly stochastic matrix D. Thus Schur concavity of H says that

an ensemble with more randomness has higher entropy.

The von Neumann entropy H(ρ) of a density operator is the Shannon entropy of its

vector of eigenvalues λ(ρ). Furthermore, we showed in Exercise 2.6 that if the quantum

state ensemble E = {|φ(x)⟩, p(x)} realizes ρ, then p ≺ λ(ρ); therefore H(ρ) ≤ H(X),

where equality holds only for an ensemble of mutually orthogonal states. The decrease in

entropyH(X)−H(ρ) quantifies how distinguishability is lost when we mix nonorthogonal

pure states. As we will soon see, the amount of information we can gain by measuring ρ

is no more than H(ρ) bits, so some of the information about which state was prepared

has been irretrievably lost if H(ρ) < H(X).
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If we perform an orthogonal measurement on ρ by projecting onto the basis {|y⟩},
then outcome y occurs with probability

q(y) = ⟨y|ρ|y⟩ =
∑
a

|⟨y|a⟩|2λa, where ρ =
∑
a

λa|a⟩⟨a| (10.74)

and {|a⟩} is the basis in which ρ is diagonal. Since Dya = |⟨y|a⟩|2 is a doubly stochastic

matrix, q ≺ λ(ρ) and therefore H(Y ) ≥ H(ρ), where equality holds only if the measure-

ment is in the basis {|a⟩}. Mathematically, the conclusion is that for a nondiagonal and

nonnegative Hermitian matrix, the diagonal elements are more random than the eigen-

values. Speaking more physically, the outcome of an orthogonal measurement is easiest

to predict if we measure an observable which commutes with the density operator, and

becomes less predictable if we measure in a different basis.

This majorization property has a further consequence, which will be useful for our dis-

cussion of quantum compression. Suppose that ρ is a density operator of a d-dimensional

system, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and that E′ =
∑d′

i=1 |ei⟩⟨ei| is a projector

onto a subspace Λ of dimension d′ ≤ d with orthonormal basis {|ei⟩}. Then

tr
(
ρE′) = d′∑

i=1

⟨ei|ρ|ei⟩ ≤
d′∑
a=1

λa, (10.75)

where the inequality follows because the diagonal elements of ρ in the basis {|ei⟩}
are majorized by the eigenvalues of ρ. In other words, if we perform a two-outcome

orthogonal measurement, projecting onto either Λ or its orthogonal complement Λ⊥, the

probability of projecting onto Λ is no larger than the sum of the d′ largest eigenvalues

of ρ (the Ky Fan dominance principle).

10.2.3 Strong subadditivity

In addition to the subadditivity property I(X;Y ) ≥ 0, correlations of classical random

variables obey a further property called strong subadditivity:

I(X;Y Z) ≥ I(X;Y ). (10.76)

This is the eminently reasonable statement that the correlations of X with Y Z are at

least as strong as the correlations of X with Y alone.

There is another useful way to think about (classical) strong subadditivity. Recalling

the definition of mutual information we have

I(X;Y Z)− I(X;Y ) = −
〈
log

p(x)p(y, z)

p(x, y, z)
+ log

p(x, y)

p(x)p(y)

〉
= −

〈
log

p(x, y)

p(y)

p(y, z)

p(y)

p(y)

p(x, y, z)

〉
= −

〈
log

p(x|y)p(z|y)
p(x, z|y)

〉
=
∑
y

p(y)I(X;Z|y) ≥ 0, (10.77)

where in the last line we used p(x, y, z) = p(x, z|y)p(y). For each fixed y, p(x, z|y)
is a normalized probability distribution with nonnegative mutual information; hence

I(X;Y Z) − I(X;Y ) is a convex combination of nonnegative terms and therefore non-

negative. The quantity I(X;Z|Y ) := I(X;Y Z)− I(X;Y ) is called the conditional mu-

tual information, because it quantifies how strongly X and Z are correlated when Y is
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known; strong subadditivity can be restated as the nonnegativity of conditional mutual

information,

I(X;Z|Y ) ≥ 0. (10.78)

The identities in eq.(10.77) demonstrate that I(X;Z|Y ) is symmetric under interchange

of X and Z, although this is not manifest in the expression I(X;Z|Y ) = I(X;Y Z) −
I(X;Y ).

One might ask under what conditions strong subadditivity is satisfied as an equality;

that is, when does the conditional mutual information vanish? Since I(X;Z|Y ) is a sum

of nonnegative terms, each of these terms must vanish if I(X;Z|Y ) = 0. Therefore for

each y with p(y) > 0, we have I(X;Z|y) = 0. The mutual information vanishes only for

a product distribution; therefore

p(x, z|y) = p(x|y)p(z|y) =⇒ p(x, y, z) = p(x|y)p(z|y)p(y). (10.79)

This means that the correlations between x and z arise solely from their shared corre-

lation with y, in which case we say that x and z are conditionally independent.

Correlations of quantum systems also obey strong subadditivity:

I(A;BC)− I(A;B) := I(A;C|B) ≥ 0. (10.80)

But while the proof is elementary in the classical case, in the quantum setting strong

subadditivity is a rather deep result with many important consequences. We will post-

pone the proof until §10.8.3, where we will be able to justify the quantum statement by

giving it a clear operational meaning.

We’ll also see in Exercise 10.3 that strong subadditivity follows easily from another

deep property, the monotonicity of relative entropy:

D(ρA∥σA) ≤ D(ρAB∥σAB), (10.81)

where

D(ρ∥σ) := tr ρ (logρ− logσ) . (10.82)

We won’t discuss the details, but it turns out that the quantum relative entropy of

ρ with respect to σ can be interpreted as a measure of the distinguishability of the

two states in the context of hypothesis testing, much as the classical relative entropy

D(p∥q) is a measure of distinguishability of probability distributions as discussed in

§10.1.4. Hence the monotonicity of quantum relative entropy amounts to the reasonable

statement that quantum states on AB become no easier to distinguish when we look at

only the subsystem A than when we look at the full system AB. It also follows (Exercise

10.3), that the action of a quantum channel N cannot increase relative entropy:

D(N (ρ)∥N (σ)) ≤ D(ρ∥σ). (10.83)

There are a few other ways of formulating strong subadditivity which are helpful

to keep in mind. By expressing the quantum mutual information in terms of the von

Neumann entropy we find

H(ABC) +H(B) ≤ H(AB) +H(BC). (10.84)

While A,B,C are three disjoint quantum systems, we may view AB and BC as overlap-

ping systems with intersection B and union ABC; then strong subadditivity says that

the sum of the entropies of two overlapping systems is at least as large as the sum of the
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entropies of their union and their intersection. In terms of conditional entropy, strong

subadditivity becomes

H(A|B) ≥ H(A|BC); (10.85)

loosely speaking, our ignorance about A when we know only B is no smaller than our

ignorance about A when we know both B and C, but with the proviso that for quantum

information “ignorance” can sometimes be negative!

As in the classical case, it is instructive to consider the condition for equality in strong

subadditivity. What does it mean for systems to have quantum conditional independence,

I(A;C|B) = 0? It is easy to formulate a sufficient condition. Suppose that system B has

a decomposition as a direct sum of tensor products of Hilbert spaces

HB =
⊕
j

HBj =
⊕
j

HBL
j
⊗HBR

j
, (10.86)

and that the state of ABC has the block diagonal form

ρABC =
⊕
j

pj ρABL
j
⊗ ρBR

j C
. (10.87)

In each block labeled by j the state is a tensor product, with conditional mutual infor-

mation

I(A;C|Bj) = I(A;BjC)− I(A;Bj) = I(A;BL
j )− I(A;BL

j ) = 0; (10.88)

What is less obvious is that the converse is also true — any state with I(A;C|B) = 0

has a decomposition as in eq.(10.87). This is a useful fact, though we will not give the

proof here.

10.2.4 Monotonicity of mutual information

Strong subadditivity implies another important property of quantum mutual informa-

tion, its monotonicity — a quantum channel acting on system B cannot increase the

mutual information of A and B. To derive monotonicity, suppose that a quantum chan-

nel NB→B′
maps B to B′. Like any quantum channel, N has an isometric extension,

its Stinespring dilation UB→B′E , mapping B to B′ and a suitable environment system

E. Since the isometry U does not change the eigenvalues of the density operator, it

preserves the entropy of B and of AB,

H(B) = H(B′E), H(AB) = H(AB′E), (10.89)

which implies

I(A;B) = H(A) +H(B)−H(AB)

= H(A) +H(B′E)−H(ABE′) = I(A;B′E). (10.90)

From strong subadditivity, we obtain

I(A;B) = I(A;B′E) ≥ I(A;B′) (10.91)

the desired statement of monotonicity.
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10.2.5 Entropy and thermodynamics

The concept of entropy first entered science through the study of thermodynamics,

and the mathematical properties of entropy we have enumerated have many interesting

thermodynamic implications. Here we will just mention a few ways in which the non-

negativity and monotonicity of quantum relative entropy relate to ideas encountered in

thermodynamics.

There are two distinct ways to approach the foundations of quantum statistical

physics. In one, we consider the evolution of an isolated closed quantum system, but

ask what we will observe if we have access to only a portion of the full system. Even

though the evolution of the full system is unitary, the evolution of a subsystem is not,

and the subsystem may be accurately described by a thermal ensemble at late times.

Information which is initially encoded locally in an out-of-equilibrium state becomes

encoded more and more nonlocally as the system evolves, eventually becoming invisible

to an observer confined to the subsystem.

In the other approach, we consider the evolution of an open system A, in contact with

an unobserved environment E, and track the evolution of A only. From a fundamental

perspective this second approach may be regarded as a special case of the first, since

AE is closed, with A as a privileged subsystem. In practice, though, it is often more

convenient to describe the evolution of an open system using a master equation as

in Chapter 3, and to analyze evolution toward thermal equilibrium without explicit

reference to the environment.

Free energy and the second law.

Tools of quantum Shannon theory can help us understand why the state of an open

system with Hamiltonian H might be expected to be close to the thermal Gibbs state

ρβ =
e−βH

tr (e−βH)
, (10.92)

where kT = β−1 is the temperature. Here let’s observe one noteworthy feature of this

state. For an arbitrary density operator ρ, consider its free energy

F (ρ) = E(ρ)− β−1S(ρ) (10.93)

where E(ρ) = ⟨H⟩ρ denotes the expectation value of the Hamiltonian in this state; for

this subsection we respect the conventions of thermodynamics by denoting von Neumann

entropy by S(ρ) rather than H(ρ) (lest H be confused with the Hamiltonian H), and

by using natural logarithms. Expressing F (ρ) and the free energy F (ρβ) of the Gibbs

state as

F (ρ) = tr (ρH)− β−1S(ρ) = β−1tr ρ (lnρ+ βH) ,

F (ρβ) = −β−1 ln
(
tr e−βH

)
, (10.94)

we see that the relative entropy of ρ and ρβ is

D(ρ∥ρβ) = tr (ρ lnρ)− tr
(
ρ lnρβ

)
= β

(
F (ρ)− F (ρβ)

)
≥ 0, (10.95)

with equality only for ρ = ρβ. The nonnegativity of relative entropy implies that at a

given temperature β−1, the Gibbs state ρβ has the lowest possible free energy. Our open
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system, in contact with a thermal reservoir at temperature β−1, will prefer the Gibbs

state if it wishes to minimize its free energy.

What can we say about the approach to thermal equilibrium of an open system?

We may anticipate that the joint unitary evolution of system and reservoir induces a

quantum channel N acting on the system alone, and we know that relative entropy is

monotonic — if

N : ρ 7→ ρ′, N : σ 7→ σ′, (10.96)

then

D(ρ′∥σ′) ≤ D(ρ∥σ). (10.97)

Furthermore, if the Gibbs state is an equilibrium state, we expect this channel to preserve

the Gibbs state

N : ρβ 7→ ρβ; (10.98)

therefore,

D(ρ′∥ρβ) = β
(
F (ρ′)− F (ρβ)

)
≤ β

(
F (ρ)− F (ρβ)

)
= D(ρ∥ρβ), (10.99)

and hence

F (ρ′) ≤ F (ρ). (10.100)

Any channel that preserves the Gibbs state cannot increase the free energy; instead,

free energy of an out-of-equilibrium state is monotonically decreasing under open-state

evolution. This statement is a version of the second law of thermodynamics.

We’ll have more to say about how quantum information theory illuminates thermo-

dynamics in §10.8.4.

10.2.6 Bekenstein’s entropy bound.

Similar ideas lead to Bekenstein’s bound on entropy in quantum field theory. The field-

theoretic details, though interesting, would lead us far afield. The gist is that Bekenstein

proposed an inequality relating the energy and the entropy in a bounded spatial region.

This bound was motivated by gravitational physics, but can be formulated without

reference to gravitation, and follows from properties of relative entropy.

A subtlety is that entropy of a region is infinite in quantum field theory, because

of contributions coming from arbitrarily short-wavelength quantum fluctuations near

the boundary of the region. Therefore we have to make a subtraction to define a finite

quantity. The natural way to do this is to subtract away the entropy of the same region

in the vacuum state of the theory, as any finite energy state in a finite volume has the

same structure as the vacuum at very short distances. Although the vacuum is a pure

state, it, and any other reasonable state, has a marginal state in a finite region which is

highly mixed, because of entanglement between the region and its complement.

For the purpose of our discussion here, we may designate any mixed state ρ0 we choose

supported in the bounded region as the “vacuum,” and define a corresponding “modular

Hamiltonian” K by

ρ0 =
e−K

tr (e−K)
. (10.101)
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That is, we regard the state as the thermal mixed state of K, with the temperature arbi-

trarily set to unity (which is just a normalization convention for K). Then by rewriting

eq.(10.95) we see that, for any state ρ, D(ρ∥ρ0) ≥ 0 implies

S(ρ)− S(ρ0) ≤ tr (ρK)− tr (ρ0K) (10.102)

The left-hand side, the entropy with vacuum entropy subtracted, is not larger than

the right-hand side, the (modular) energy with vacuum energy subtracted. This is one

version of Bekenstein’s bound. HereK, which is dimensionless, can be loosely interpreted

as ER, where E is the energy contained in the region and R is its linear size.

While the bound follows easily from nonnegativity of relative entropy, the subtle part

of the argument is recognizing that the (suitably subtracted) expectation value of the

modular Hamiltonian is a reasonable way to define ER. The detailed justification for

this involves properties of relativistic quantum field theory that we won’t go into here.

Suffice it to say that, because we constructed K by regarding the marginal state of

the vacuum as the Gibbs state associated with the Hamiltonian K, we expect K to be

linear in the energy, and dimensional analysis then requires inclusion of the factor of R

(in units with ℏ = c = 1).

Bekenstein was led to conjecture such a bound by thinking about black hole thermo-

dynamics. Leaving out numerical factors, just to get a feel for the orders of magnitude

of things, the entropy of a black hole with circumference ∼ R is S ∼ R2/G, and its mass

(energy) is E ∼ R/G, where G is Newton’s gravitational constant; hence S ∼ ER for a

black hole. Bekenstein realized that unless S = O(ER) for arbitrary states and regions,

we could throw extra stuff into the region, making a black hole with lower entropy than

the initial state, thus violating the (generalized) second law of thermodynamics. Though

black holes provided the motivation, G drops out of the inequality, which holds even in

nongravitational relativistic quantum field theories.

10.2.7 Entropic uncertainty relations

The uncertainty principle asserts that noncommuting observables cannot simultaneously

have definite values. To translate this statement into mathematics, recall that a Hermi-

tian observable A has spectral representation

A =
∑
x

|x⟩a(x)⟨x| (10.103)

where {|x⟩} is the orthonormal basis of eigenvectors ofA and {a(x)} is the corresponding
vector of eigenvalues; if A is measured in the state ρ, the outcome a(x) occurs with

probability p(x) = ⟨x|ρ|x⟩. Thus A has expectation value tr(ρA) and variance

(∆A)2 = tr
(
ρA2

)
− (trρA)2 . (10.104)

Using the Cauchy-Schwarz inequality, we can show that if A and B are two Hermitian

observables and ρ = |ψ⟩⟨ψ| is a pure state, then

∆A∆B ≥ 1

2
|⟨ψ|[A,B]|ψ⟩|. (10.105)

Eq.(10.105) is a useful statement of the uncertainty principle, but has drawbacks. It

depends on the state |ψ⟩ and for that reason does not fully capture the incompatibility

of the two observables. Furthermore, the variance does not characterize very well the
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unpredictability of the measurement outcomes; entropy would be a more informative

measure.

In fact there are entropic uncertainty relations which do not suffer from these defi-

ciencies. If we measure a state ρ by projecting onto the orthonormal basis {|x⟩}, the
outcomes define a classical ensemble

X = {x, p(x) = ⟨x|ρ|x⟩}; (10.106)

that is, a probability vector whose entries are the diagonal elements of ρ in the x-

basis. The Shannon entropy H(X) quantifies how uncertain we are about the outcome

before we perform the measurement. If {|z⟩} is another orthonormal basis, there is a

corresponding classical ensemble Z describing the probability distribution of outcomes

when we measure the same state ρ in the z-basis. If the two bases are incompatible, there

is a tradeoff between our uncertainty about X and about Z, captured by the inequality

H(X) +H(Z) ≥ log

(
1

c

)
+H(ρ), (10.107)

where

c = max
x,z

|⟨x|z⟩|2. (10.108)

The second term on the right-hand side, which vanishes if ρ is a pure state, reminds us

that our uncertainty increases when the state is mixed. Like many good things in quan-

tum information theory, this entropic uncertainty relation follows from the monotonicity

of the quantum relative entropy.

For each measurement there is a corresponding quantum channel, realized by per-

forming the measurement and printing the outcome in a classical register,

MX : ρ 7→
∑
x

|x⟩⟨x|ρ|x⟩⟨x| =: ρX ,

MZ : ρ 7→
∑
z

|z⟩⟨z|ρ|z⟩⟨z| =: ρZ . (10.109)

The Shannon entropy of the measurement outcome distribution is also the von Neumann

entropy of the corresponding channel’s output state,

H(X) = H(ρX), H(Z) = H(ρZ); (10.110)

the entropy of this output state can be expressed in terms of the relative entropy of

input and output, and the entropy of the channel input, as in

H(X) = −trρX logρX = −trρ logρX = D(ρ∥ρX) +H(ρ). (10.111)

Using the monotonicity of relative entropy under the action of the channel MZ , we

have

D(ρ∥ρX) ≥ D(ρZ∥MZ(ρX)), (10.112)

where

D(ρZ∥MZ(ρX)) = −H(ρZ)− trρZ logMZ(ρX), (10.113)

and

MZ(ρX) =
∑
x,z

|z⟩⟨z|x⟩⟨x|ρ|x⟩⟨x|z⟩⟨z|. (10.114)
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Writing

logMZ(ρX) =
∑
z

|z⟩ log

(∑
x

⟨z|x⟩⟨x|ρ|x⟩⟨x|z⟩

)
⟨z|, (10.115)

we see that

−trρZ logMZ(ρX) = −
∑
z

⟨z|ρ|z⟩ log

(∑
x

⟨z|x⟩⟨x|ρ|x⟩⟨x|z⟩

)
. (10.116)

Now, because − log(·) is a monotonically decreasing function, we have

− log

(∑
x

⟨z|x⟩⟨x|ρ|x⟩⟨x|z⟩

)
≥ − log

(
max
x,z

|⟨x|z⟩|2
∑
x

⟨x|ρ|x⟩

)

= log

(
1

c

)
, (10.117)

and therefore

−trρZ logMZ(ρX) ≥ log

(
1

c

)
. (10.118)

Finally, putting together eq.(10.111), (10.112) (10.113), (10.118), we find

H(X)−H(ρ) = D(ρ∥ρX) ≥ D(ρZ∥MZ(ρX))

= −H(Z)− trρZ logMZ(ρX) ≥ −H(Z) + log

(
1

c

)
, (10.119)

which is equivalent to eq.(10.107).

We say that two different bases {|x⟩}, {|z⟩} for a d-dimensional Hilbert space are

mutually unbiased if for all x, z

|⟨x|z⟩|2 = 1

d
; (10.120)

thus, if we measure any x-basis state |x⟩ in the z-basis, all d outcomes are equally

probable. For measurements in two mutually unbiased bases performed on a pure state,

the entropic uncertainty relation becomes

H(X) +H(Z) ≥ log d. (10.121)

Clearly this inequality is tight, as it is saturated by x-basis (or z-basis) states, for which

H(X) = 0 and H(Z) = log d.

10.3 Quantum Source Coding

What is the quantum analog of Shannon’s source coding theorem?

Let’s consider a long message consisting of n letters, where each letter is a pure

quantum state chosen by sampling from the ensemble

{|φ(x)⟩, p(x)}. (10.122)

If the states of this ensemble are mutually orthogonal, then the message might as well

be classical; the interesting quantum case is where the states are not orthogonal and
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therefore not perfectly distinguishable. The density operator realized by this ensemble

is

ρ =
∑
x

p(x)|φ(x)⟩⟨φ(x)|, (10.123)

and the entire n-letter message has the density operator

ρ⊗n = ρ⊗ · · · ⊗ ρ. (10.124)

How redundant is the quantum information in this message? We would like to devise

a quantum code allowing us to compress the message to a smaller Hilbert space, but

without much compromising the fidelity of the message. Perhaps we have a quantum

memory device, and we know the statistical properties of the recorded data; specifically,

we know ρ. We want to conserve space on our (very expensive) quantum hard drive by

compressing the data.

The optimal compression that can be achieved was found by Schumacher. As you

might guess, the message can be compressed to a Hilbert space H with

dimH = 2n(H(ρ)+o(1)) (10.125)

with negligible loss of fidelity as n → ∞, while errorless compression to dimension

2n(H(ρ)−Ω(1)) is not possible. In this sense, the von Neumann entropy is the number

of qubits of quantum information carried per letter of the message. Compression is

always possible unless ρ is maximally mixed, just as we can always compress a classical

message unless the information source is uniformly random. This result provides a precise

operational interpretation for von Neumann entropy.

Once Shannon’s results are known and understood, the proof of Schumacher’s com-

pression theorem is not difficult, as the mathematical ideas needed are very similar to

those used by Shannon. But conceptually quantum compression is very different from

its classical counterpart, as the imperfect distinguishability of nonorthogonal quantum

states is the central idea.

10.3.1 Quantum compression: an example

Before discussing Schumacher’s quantum compression protocol in full generality, it is

helpful to consider a simple example. Suppose that each letter is a single qubit drawn

from the ensemble

| ↑z⟩ =

(
1

0

)
, p =

1

2
, (10.126)

| ↑x⟩ =

(
1√
2
1√
2

)
, p =

1

2
, (10.127)

so that the density operator of each letter is

ρ =
1

2
| ↑z⟩⟨↑z |+

1

2
| ↑x⟩⟨↑x |

=
1

2

(
1 0

0 0

)
+

1

2

(
1
2

1
2

1
2

1
2

)
=

(
3
4

1
4

1
4

1
4

)
. (10.128)
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As is obvious from symmetry, the eigenstates of ρ are qubits oriented up and down along

the axis n̂ = 1√
2
(x̂+ ẑ),

|0′⟩ ≡ | ↑n̂⟩ =
(
cos π8
sin π

8

)
,

|1′⟩ ≡ | ↓n̂⟩ =
(

sin π
8

− cos π8

)
; (10.129)

the eigenvalues are

λ(0′) =
1

2
+

1

2
√
2
= cos2

π

8
,

λ(1′) =
1

2
− 1

2
√
2
= sin2

π

8
; (10.130)

evidently λ(0′) + λ(1′) = 1 and λ(0′)λ(1′) = 1
8 = detρ. The eigenstate |0′⟩ has equal

(and relatively large) overlap with both signal states

|⟨0′| ↑z⟩|2 = |⟨0′| ↑x⟩|2 = cos2
π

8
= .8535, (10.131)

while |1′⟩ has equal (and relatively small) overlap with both,

|⟨1′| ↑z⟩|2 = |⟨1′| ↑x⟩|2 = sin2
π

8
= .1465. (10.132)

Thus if we don’t know whether | ↑z⟩ or | ↑x⟩ was sent, the best guess we can make is

|ψ⟩ = |0′⟩. This guess has the maximal fidelity with ρ

F =
1

2
|⟨↑z |ψ⟩|2 +

1

2
|⟨↑x |ψ⟩|2, (10.133)

among all possible single-qubit states |ψ⟩ (F = .8535).

Now imagine that Alice needs to send three letters to Bob, but she can afford to send

only two qubits. Still, she wants Bob to reconstruct her state with the highest possible

fidelity. She could send Bob two of her three letters, and ask Bob to guess |0′⟩ for the

third. Then Bob receives two letters with perfect fidelity, and his guess has F = .8535

for the third; hence F = .8535 overall. But is there a more clever procedure that achieves

higher fidelity?

Yes, there is. By diagonalizing ρ, we decomposed the Hilbert space of a single qubit

into a “likely” one-dimensional subspace (spanned by |0′⟩) and an “unlikely” one-

dimensional subspace (spanned by |1′⟩). In a similar way we can decompose the Hilbert

space of three qubits into likely and unlikely subspaces. If |ψ⟩ = |ψ1⟩⊗ |ψ2⟩⊗ |ψ3⟩ is any
signal state, where the state of each qubit is either | ↑z⟩ or | ↑x⟩, we have

|⟨0′0′0′|ψ⟩|2 = cos6
(π
8

)
= .6219,

|⟨0′0′1′|ψ⟩|2 = |⟨0′1′0′|ψ⟩|2 = |⟨1′0′0′|ψ⟩|2 = cos4
(π
8

)
sin2

(π
8

)
= .1067,

|⟨0′1′1′|ψ⟩|2 = |⟨1′0′1′|ψ⟩|2 = |⟨1′1′0′|ψ⟩|2 = cos2
(π
8

)
sin4

(π
8

)
= .0183,

|⟨1′1′1′|ψ⟩|2 = sin6
(π
8

)
= .0031. (10.134)

Thus, we may decompose the space into the likely subspace Λ spanned by

{|0′0′0′⟩, |0′0′1′⟩, |0′1′0′⟩, |1′0′0′⟩}, and its orthogonal complement Λ⊥. If we make an
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incomplete orthogonal measurement that projects a signal state onto Λ or Λ⊥, the prob-

ability of projecting onto the likely subspace Λ is

plikely = .6219 + 3(.1067) = .9419, (10.135)

while the probability of projecting onto the unlikely subspace is

punlikely = 3(.0183) + .0031 = .0581. (10.136)

To perform this measurement, Alice could, for example, first apply a unitary trans-

formation U that rotates the four high-probability basis states to

|·⟩ ⊗ |·⟩ ⊗ |0⟩, (10.137)

and the four low-probability basis states to

|·⟩ ⊗ |·⟩ ⊗ |1⟩; (10.138)

then Alice measures the third qubit to perform the projection. If the outcome is |0⟩,
then Alice’s input state has in effect been projected onto Λ. She sends the remaining

two unmeasured qubits to Bob. When Bob receives this compressed two-qubit state

|ψcomp⟩, he decompresses it by appending |0⟩ and applying U−1, obtaining

|ψ′⟩ = U−1(|ψcomp⟩ ⊗ |0⟩). (10.139)

If Alice’s measurement of the third qubit yields |1⟩, she has projected her input state

onto the low-probability subspace Λ⊥. In this event, the best thing she can do is send

the state that Bob will decompress to the most likely state |0′0′0′⟩ – that is, she sends

the state |ψcomp⟩ such that

|ψ′⟩ = U−1(|ψcomp⟩ ⊗ |0⟩) = |0′0′0′⟩. (10.140)

Thus, if Alice encodes the three-qubit signal state |ψ⟩, sends two qubits to Bob, and

Bob decodes as just described, then Bob obtains the state ρ′

|ψ⟩⟨ψ| → ρ′ = E|ψ⟩⟨ψ|E + |0′0′0′⟩⟨ψ|(I −E)|ψ⟩⟨0′0′0′|, (10.141)

where E is the projection onto Λ. The fidelity achieved by this procedure is

F = ⟨ψ|ρ′|ψ⟩ = (⟨ψ|E|ψ⟩)2 + (⟨ψ|(I −E)|ψ⟩)(⟨ψ|0′0′0′⟩)2

= (.9419)2 + (.0581)(.6219) = .9234. (10.142)

This is indeed better than the naive procedure of sending two of the three qubits each

with perfect fidelity.

As we consider longer messages with more letters, the fidelity of the compression

improves, as long as we don’t try to compress too much. The Von-Neumann entropy of

the one-qubit ensemble is

H(ρ) = H
(
cos2

π

8

)
= .60088 . . . (10.143)

Therefore, according to Schumacher’s theorem, we can shorten a long message by the

factor, say, .6009, and still achieve very good fidelity.
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10.3.2 Schumacher compression in general

The key to Shannon’s noiseless coding theorem is that we can code the typical sequences

and ignore the rest, without much loss of fidelity. To quantify the compressibility of

quantum information, we promote the notion of a typical sequence to that of a typical

subspace. The key to Schumacher’s noiseless quantum coding theorem is that we can

code the typical subspace and ignore its orthogonal complement, without much loss of

fidelity.

We consider a message of n letters where each letter is a pure quantum state drawn

from the ensemble {|φ(x)⟩, p(x)}, so that the density operator of a single letter is

ρ =
∑
x

p(x)|φ(x)⟩⟨φ(x)|. (10.144)

Since the letters are drawn independently, the density operator of the entire message is

ρ⊗n ≡ ρ⊗ · · · ⊗ ρ. (10.145)

We claim that, for n large, this density matrix has nearly all of its support on a sub-

space of the full Hilbert space of the messages, where the dimension of this subspace

asymptotically approaches 2nH(ρ).

This claim follows directly from the corresponding classical statement, for we may

consider ρ to be realized by an ensemble of orthonormal pure states, its eigenstates,

where the probability assigned to each eigenstate is the corresponding eigenvalue. In

this basis our source of quantum information is effectively classical, producing messages

which are tensor products of ρ eigenstates, each with a probability given by the product

of the corresponding eigenvalues. For a specified n and δ, define the δ-typical subspace

Λ as the space spanned by the eigenvectors of ρ⊗n with eigenvalues λ satisfying

2−n(H−δ) ≥ λ ≥ 2−n(H+δ). (10.146)

Borrowing directly from Shannon’s argument, we infer that for any δ, ε > 0 and n

sufficiently large, the sum of the eigenvalues of ρ⊗n that obey this condition satisfies

tr(ρ⊗nE) ≥ 1− ε, (10.147)

where E denotes the projection onto the typical subspace Λ, and the number dim(Λ) of

such eigenvalues satisfies

2n(H+δ) ≥ dim(Λ) ≥ (1− ε)2n(H−δ). (10.148)

Our coding strategy is to send states in the typical subspace faithfully. We can make a

measurement that projects the input message onto either Λ or Λ⊥; the outcome will be

Λ with probability pΛ = tr(ρ⊗nE) ≥ 1 − ε. In that event, the projected state is coded

and sent. Asymptotically, the probability of the other outcome becomes negligible, so it

matters little what we do in that case.

The coding of the projected state merely packages it so it can be carried by a minimal

number of qubits. For example, we apply a unitary change of basis U that takes each

state |ψtyp⟩ in Λ to a state of the form

U |ψtyp⟩ = |ψcomp⟩ ⊗ |0rest⟩, (10.149)

where |ψcomp⟩ is a state of n(H + δ) qubits, and |0rest⟩ denotes the state |0⟩ ⊗ . . .⊗ |0⟩
of the remaining qubits. Alice sends |ψcomp⟩ to Bob, who decodes by appending |0rest⟩
and applying U−1.
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Suppose that

|φ(x⃗)⟩ = |φ(x1)⟩ ⊗ . . .⊗ |φ(xn)⟩, (10.150)

denotes any one of the n-letter pure state messages that might be sent. After coding,

transmission, and decoding are carried out as just described, Bob has reconstructed a

state

|φ(x⃗)⟩⟨φ(x⃗)| 7→ ρ′(x⃗) = E|φ(x⃗)⟩⟨φ(x⃗)|E
+ ρJunk(x⃗)⟨φ(x⃗)|(I −E)|φ(x⃗)⟩, (10.151)

where ρJunk(x⃗) is the state we choose to send if the measurement yields the outcome

Λ⊥. What can we say about the fidelity of this procedure?

The fidelity varies from message to message, so we consider the fidelity averaged over

the ensemble of possible messages:

F̄ =
∑
x⃗

p(x⃗)⟨φ(x⃗)|ρ′(x⃗)|φ(x⃗)⟩

=
∑
x⃗

p(x⃗)⟨φ(x⃗)|E|φ(x⃗)⟩⟨φ(x⃗)|E|φ(x⃗)⟩

+
∑
x⃗

p(x⃗)⟨φ(x⃗)|ρJunk(x⃗)|φ(x⃗)⟩⟨φ(x⃗)|I −E|φ(x⃗)⟩

≥
∑
x⃗

p(x⃗)⟨φ(x⃗)|E|φ(x⃗)⟩2, (10.152)

where the last inequality holds because the “Junk” term is nonnegative. Since any real

number z satisfies

(z − 1)2 ≥ 0, or z2 ≥ 2z − 1, (10.153)

we have (setting z = ⟨φ(x⃗)|E|φ(x⃗)⟩)

⟨φ(x⃗)|E|φ(x⃗)⟩2 ≥ 2⟨φ(x⃗)|E|φ(x⃗)⟩ − 1, (10.154)

and hence

F̄ ≥
∑
x⃗

p(x⃗)(2⟨φ(x⃗)|E|φ(x⃗)⟩ − 1)

= 2 tr(ρ⊗nE)− 1 ≥ 2(1− ε)− 1 = 1− 2ε. (10.155)

Since ε and δ can be as small as we please, we have shown that it is possible to compress

the message to n(H + o(1)) qubits, while achieving an average fidelity that becomes

arbitrarily good as n gets large.

Is further compression possible? Let us suppose that Bob will decode the message

ρcomp(x⃗) that he receives by appending qubits and applying a unitary transformation

U−1, obtaining

ρ′(x⃗) = U−1(ρcomp(x⃗)⊗ |0⟩⟨0|)U (10.156)

(“unitary decoding”), and suppose that ρcomp(x⃗) has been compressed to n(H − δ′)

qubits. Then, no matter how the input messages have been encoded, the decoded mes-

sages are all contained in a subspace Λ′ of Bob’s Hilbert space with dim(Λ′) = 2n(H−δ′).
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If the input message is |φ(x⃗)⟩, then the density operator reconstructed by Bob can be

diagonalized as

ρ′(x⃗) =
∑
ax⃗

|ax⃗⟩λax⃗⟨ax⃗|, (10.157)

where the |ax⃗⟩’s are mutually orthogonal states in Λ′. The fidelity of the reconstructed

message is

F (x⃗) = ⟨φ(x⃗)|ρ′(x⃗)|φ(x⃗)⟩

=
∑
ax⃗

λax⃗⟨φ(x⃗)|ax⃗⟩⟨ax⃗|φ(x⃗)⟩

≤
∑
ax⃗

⟨φ(x⃗)|ax⃗⟩⟨ax⃗|φ(x⃗)⟩ ≤ ⟨φ(x⃗)|E′|φ(x⃗)⟩, (10.158)

where E′ denotes the orthogonal projection onto the subspace Λ′. The average fidelity

therefore obeys

F̄ =
∑
x⃗

p(x⃗)F (x⃗) ≤
∑
x⃗

p(x⃗)⟨φ(x⃗)|E′|φ(x⃗)⟩ = tr(ρ⊗nE′). (10.159)

But, according to the Ky Fan dominance principle discussed in §10.2.2, since E′ projects

onto a space of dimension 2n(H−δ′), tr(ρ⊗nE′) can be no larger than the sum of the

2n(H−δ′) largest eigenvalues of ρ⊗n. The δ-typical eigenvalues of ρ⊗n are no smaller than

2−n(H−δ), so the sum of the 2n(H−δ′) largest eigenvalues can be bounded above:

tr(ρ⊗nE′) ≤ 2n(H−δ′)2−n(H−δ) + ε = 2−n(δ
′−δ) + ε, (10.160)

where the + ε accounts for the contribution from the atypical eigenvalues. Since we

may choose ε and δ as small as we please for sufficiently large n, we conclude that the

average fidelity F̄ gets small as n→ ∞ if we compress to H(ρ)−Ω(1) qubits per letter.

We find, then, that H(ρ) qubits per letter is the optimal compression of the quantum

information that can be achieved if we are to obtain good fidelity as n goes to infinity.

This is Schumacher’s quantum source coding theorem.

The above argument applies to any conceivable encoding scheme, but only to a re-

stricted class of decoding schemes, unitary decodings. The extension of the argument to

general decoding schemes is sketched in §10.6.3. The conclusion is the same. The point

is that n(H − δ) qubits are too few to faithfully encode the typical subspace.

There is another useful way to think about Schumacher’s quantum compression pro-

tocol. Suppose that Alice’s density operator ρ⊗n
A has a purification |ψ⟩RA which Alice

shares with Robert. Alice wants to convey her share of |ψ⟩RA to Bob with high fidelity,

sending as few qubits to Bob as possible. To accomplish this task, Alice can use the same

procedure as described above, attempting to compress the state of A by projecting onto

its typical subspace Λ. Alice’s projection succeeds with probability

P (E) = ⟨ψ|I ⊗E|ψ⟩ = tr
(
ρ⊗nE

)
≥ 1− ε, (10.161)

where E projects onto Λ, and when successful prepares the state

(I ⊗E) |ψ⟩√
P (E)

. (10.162)

Therefore, after Bob decompresses, the state he shares with Robert has fidelity Fe with
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|ψ⟩ satisfying

Fe ≥ ⟨ψ|I ⊗E|ψ⟩⟨ψ|I ⊗E|ψ⟩ =
(
tr
(
ρ⊗nE

))2
= P (E)2 ≥ (1− ε)2 ≥ 1− 2ε.

(10.163)

We conclude that Alice can transfer her share of the pure state |ψ⟩RA to Bob by sending

nH(ρ) + o(n) qubits, achieving arbitrarily good entanglement fidelity Fe as n → ∞. In

§10.8.2 we’ll derive a more general version of this result.

To summarize, there is a close analogy between Shannon’s classical source coding

theorem and Schumacher’s quantum source coding theorem. In the classical case, nearly

all long messages are typical sequences, so we can code only these and still have a small

probability of error. In the quantum case, nearly all long messages have nearly perfect

overlap with the typical subspace, so we can code only the typical subspace and still

achieve good fidelity.

Alternatively, Alice could send classical information to Bob, the string x1x2 · · ·xn, and
Bob could follow these classical instructions to reconstruct Alice’s state |φ(x1)⟩ ⊗ . . .⊗
|φ(xn)⟩. By this means, they could achieve high-fidelity compression to H(X) + o(1)

bits — or qubits — per letter, where X is the classical ensemble {x, p(x)}. But if

{|φ(x)⟩, p(x)} is an ensemble of nonorthogonal pure states, this classically achievable

amount of compression is not optimal; some of the classical information about the

preparation of the state is redundant, because the nonorthogonal states cannot be per-

fectly distinguished. Schumacher coding goes further, achieving optimal compression to

H(ρ) + o(1) qubits per letter. Quantum compression packages the message more effi-

ciently than classical compression, but at a price — Bob receives the quantum state

Alice intended to send, but Bob doesn’t know what he has. In contrast to the classical

case, Bob can’t fully decipher Alice’s quantum message accurately. An attempt to read

the message will unavoidably disturb it.

10.4 Entanglement Concentration and Dilution

Any bipartite pure state that is not a product state is entangled. But how entangled?

Can we compare two states and say that one is more entangled than the other?

For example, consider the two bipartite states

|ϕ+⟩ = 1√
2
(|00⟩+ |11⟩),

|ψ⟩ =
√

2

3
|00⟩+ 1√

6
|11⟩+ 1√

6
|22⟩. (10.164)

|ϕ+⟩ is a maximally entangled state of two qubits, while |ψ⟩ is a partially entangled state

of two qutrits. Which is more entangled?

It is not immediately clear that the question has a meaningful answer. Why should it

be possible to find an unambiguous way of ordering all bipartite pure states according

to their degree of entanglement? Can we compare a pair of qutrits with a pair of qubits

any more than we can compare apples and oranges?

A crucial feature of entanglement is that it cannot be created by local operations

and classical communication (LOCC). In particular, if Alice and Bob share a bipartite

pure state, its Schmidt number does not increase if Alice or Bob performs a unitary

transformation on her/his share of the state, nor if Alice or Bob measures her/his share,
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even if Alice and Bob exchange classical messages about their actions and measurement

outcomes. Therefore, any quantitative measure of entanglement should have the property

that LOCC cannot increase it, and it should also vanish for an unentangled product

state. An obvious candidate is the Schmidt number, but on reflection it does not seem

very satisfactory. Consider

|ψε⟩ =
√
1− 2|ε|2 |00⟩+ ε|11⟩+ ε|22⟩, (10.165)

which has Schmidt number 3 for any |ε| > 0. Do we really want to say that |ψε⟩ is

“more entangled” than |ϕ+⟩? Entanglement, after all, can be regarded as a resource —

we might plan to use it for teleportation, for example — and it seems clear that |ψε⟩
(for |ε| ≪ 1) is a less valuable resource than |ϕ+⟩.

It turns out, though, that there is a natural and useful way to quantify the entangle-

ment of any bipartite pure state. To compare two states, we use LOCC to convert both

states to a common currency that can be compared directly. The common currency is

maximal entanglement, and the amount of shared entanglement can be expressed in units

of Bell pairs (maximally entangled two-qubit states), also called ebits of entanglement.

To quantify the entanglement of a particular bipartite pure state, |ψ⟩AB, imagine

preparing n identical copies of that state. Alice and Bob share a large supply of maxi-

mally entangled Bell pairs. Using LOCC, they are to convert k Bell pairs (|ϕ+⟩AB)⊗k)
to n high-fidelity copies of the desired state (|ψ⟩AB)⊗n). What is the minimum number

kmin of Bell pairs with which they can perform this task?

To obtain a precise answer, we consider the asymptotic setting, requiring arbitrarily

high-fidelity conversion in the limit of large n. We say that a rate R of conversion from

|ϕ+⟩ to |ψ⟩ is asymptotically achievable if for any ε, δ > 0, there is an LOCC protocol

with

k

n
≤ R+ δ, (10.166)

which prepares the target state |ψ+⟩⊗n with fidelity F ≥ 1− ε. We define the entangle-

ment cost EC of |ψ⟩ as the infimum of achievable conversion rates:

EC(|ψ⟩) := inf {achievable rate for creating |ψ⟩ from Bell pairs} . (10.167)

Asymptotically, we can create many copies of |ψ⟩ by consuming EC Bell pairs per copy.

Now imagine that n copies of |ψ⟩AB are already shared by Alice and Bob. Using

LOCC, Alice and Bob are to convert (|ψ⟩AB)⊗n back to the standard currency: k′ Bell

pairs |ϕ+⟩⊗k′AB . What is the maximum number k′max of Bell pairs they can extract from

|ψ⟩⊗nAB? In this case we say that a rate R′ of conversion from |ψ⟩ to |ϕ+⟩ is asymptotically

achievable if for any ε, δ > 0, there is an LOCC protocol with

k′

n
≥ R′ − δ, (10.168)

which prepares the target state |ϕ+⟩⊗k′ with fidelity F ≥ 1− ε. We define the distillable

entanglement ED of |ψ⟩ as the supremum of achievable conversion rates:

ED(|ψ⟩) := sup {achievable rate for distilling Bell pairs from |ψ⟩} . (10.169)

Asymptotically, we can convert many copies of |ψ⟩ to Bell pairs, obtaining ED Bell pairs

per copy of |ψ⟩ consumed.
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Since it is an inviolable principle that LOCC cannot create entanglement, it is certain

that

ED(|ψ⟩) ≤ EC(|ψ⟩); (10.170)

otherwise Alice and Bob could increase their number of shared Bell pairs by converting

them to copies of |ψ⟩ and then back to Bell pairs. In fact the entanglement cost and

distillable entanglement are equal for bipartite pure states. (The story is more compli-

cated for bipartite mixed states; see §10.5.) Therefore, for pure states at least we may

drop the subscript, using E(|ψ⟩) to denote the entanglement of |ψ⟩. We don’t need to

distinguish between entanglement cost and distillable entanglement because conversion

of entanglement from one form to another is an asymptotically reversible process. E

quantifies both what we have to pay in Bell pairs to create |ψ⟩, and the value of |ψ⟩ in
Bell pairs for performing tasks like quantum teleportation which consume entanglement.

But what is the value of E(|ψ⟩AB)? Perhaps you can guess — it is

E(|ψ⟩AB) = H(ρA) = H(ρB), (10.171)

the von Neumann entropy of Alice’s density operator ρA (or equivalently Bob’s density

operator ρB). This is clearly the right answer in the case where |ψ⟩AB is a product of k

Bell pairs. In that case ρA (or ρB) is
1
2I for each qubit in Alice’s possession

ρA =

(
1

2
I

)⊗k
, (10.172)

and

H(ρA) = k H

(
1

2
I

)
= k. (10.173)

How do we see that E = H(ρA) is the right answer for any bipartite pure state?

Though it is perfectly fine to use Bell pairs as the common currency for comparing

bipartite entangled states, in the asymptotic setting it is simpler and more natural to

allow fractions of a Bell pair, which is what we’ll do here. That is, we’ll consider a

maximally entangled state of two d-dimensional systems to be log2 d Bell pairs, even if

d is not a power of two. So our goal will be to show that Alice and Bob can use LOCC

to convert shared maximal entanglement of systems with dimension d = 2n(H(ρA)+δ)

into n copies of |ψ⟩, for any positive δ and with arbitrarily good fidelity as n→ ∞, and

conversely that Alice and Bob can use LOCC to convert n copies of |ψ⟩ into a shared

maximally entangled state of d-dimensional systems with arbitrarily good fidelity, where

d = 2n(H(ρA)−δ). This suffices to demonstrate that EC(|ψ⟩) = ED(|ψ⟩) = H(ρA).

First let’s see that if Alice and Bob share k = n(H(ρA) + δ) Bell pairs, then they

can prepare |ψ⟩⊗nAB with high fidelity using LOCC. They perform this task, called entan-

glement dilution, by combining quantum teleportation with Schumacher compression.

To get started, Alice locally creates n copies of |ψ⟩AC , where A and C are systems she

controls in her laboratory. Next she wishes to teleport the Cn share of these copies to

Bob, but to minimize the consumption of Bell pairs, she should compress Cn before

teleporting it.

If A and C are d-dimensional, then the bipartite state |ψ⟩AC can be expressed in

terms of its Schmidt basis as

|ψ⟩AC =
√
p0 |00⟩+√

p1 |11⟩+ . . .+
√
pd−1 |d−1, d−1⟩, (10.174)
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and n copies of the state can be expressed as

|ψ⟩⊗nAC =
d−1∑

x1,...,xn=0

√
p(x1) . . . p(xn) |x1x2 . . . xn⟩An ⊗ |x1x2 . . . xn⟩Cn

=
∑
x⃗

√
p(x⃗) |x⃗⟩An ⊗ |x⃗⟩Cn , (10.175)

where
∑

x⃗ p(x⃗) = 1. If Alice attempts to project onto the δ-typical subspace of Cn, she

succeeds with high probability

P =
∑

δ-typical x⃗

p(x⃗) ≥ 1− ε (10.176)

and when successful prepares the post-measurement state

|Ψ⟩AnCn = P−1/2
∑

δ-typical x⃗

√
p(x⃗) |x⃗⟩An ⊗ |x⃗⟩Cn , (10.177)

such that

⟨Ψ|ψ⊗n⟩ = P−1/2
∑

δ-typical x⃗

p(x⃗) =
√
P ≥

√
1− ε. (10.178)

Since the typical subspace has dimension at most 2n(H(ρ)+δ), Alice can teleport the

Cn half of |Ψ⟩ to Bob with perfect fidelity using no more than n(H(ρ) + δ) Bell pairs

shared by Alice and Bob. The teleportation uses LOCC: Alice’s entangled measurement,

classical communication from Alice to Bob to convey the measurement outcome, and

Bob’s unitary transformation conditioned on the outcome. Finally, after the teleporta-

tion, Bob decompresses, so that Alice and Bob share a state which has high fidelity with

|ψ⟩⊗nAB. This protocol demonstrates that the entanglement cost EC of |ψ⟩ is not more

than H(ρA).

Now consider the distillable entanglement ED. Suppose Alice and Bob share the state

|ψ⟩⊗nAB. Since |ψ⟩AB is, in general, a partially entangled state, the entanglement that Alice

and Bob share is in a diluted form. They wish to concentrate their shared entanglement,

squeezing it down to the smallest possible Hilbert space; that is, they want to convert

it to maximally-entangled pairs. We will show that Alice and Bob can “distill” at least

k′ = n(H(ρA)− δ) (10.179)

Bell pairs from |ψ⟩⊗nAB, with high likelihood of success.

To illustrate the concentration of entanglement, imagine that Alice and Bob have n

copies of the two-qubit state |ψ⟩, which is

|ψ(p)⟩ =
√
1− p |00⟩+√

p |11⟩, (10.180)

where 0 ≤ p ≤ 1, when expressed in its Schmidt basis. That is, Alice and Bob share the

state

|ψ(p)⟩⊗n = (
√
1− p |00⟩+√

p |11⟩)⊗n. (10.181)

When we expand this state in the {|0⟩, |1⟩} basis, we find 2n terms, in each of which

Alice and Bob hold exactly the same binary string of length n.
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Now suppose Alice (or Bob) performs a local measurement on her (his) n qubits,

measuring the total spin along the z-axis

σtotal
3 =

n∑
i=1

σ
(i)
3 . (10.182)

Equivalently, the measurement determines the Hamming weight of Alice’s n qubits, the

number of |1⟩’s in Alice’s n-bit string; that is, the number of spins pointing up.

In the expansion of |ψ(p)⟩⊗n there are
(
n
m

)
terms in which Alice’s string has Ham-

ming weight m, each occurring with the same amplitude: (1− p)(n−m)/2 pm/2. Hence the

probability that Alice’s measurement finds Hamming weight m is

p(m) =

(
n

m

)
(1− p)n−mpm. (10.183)

Furthermore, because Alice is careful not to acquire any additional information besides

the Hamming weight when she conducts the measurement, by measuring the Hamming

weight m she prepares a uniform superposition of all
(
n
m

)
strings with m up spins.

Because Alice and Bob have perfectly correlated strings, if Bob were to measure the

Hamming weight of his qubits he would find the same outcome as Alice. Alternatively,

Alice could report her outcome to Bob in a classical message, saving Bob the trouble of

doing the measurement himself. Thus, Alice and Bob share a maximally entangled state

D∑
i=1

|i⟩A ⊗ |i⟩B, (10.184)

where the sum runs over the D =
(
n
m

)
strings with Hamming weight m.

For n large the binomial distribution {p(m)} approaches a sharply peaked function

of m with mean µ = np and variance σ2 = np(1 − p). Hence the probability of a large

deviation from the mean,

|m− np| = Ω(n), (10.185)

is exp (−Ω(n)). Using Stirling’s approximation, it then follows that

2n(H(p)−o(1)) ≤ D ≤ 2n(H(p)+o(1)). (10.186)

with probability approaching one as n→ ∞, where H(p) = −p log2 p−(1−p) log2(1−p)
is the entropy function. Thus with high probability Alice and Bob share a maximally

entangled state of Hilbert spaces HA and HB with dim(HA) = dim(HB) = D and

log2D ≥ n(H(p) − δ). In this sense Alice and Bob can distill H(p) − δ Bell pairs per

copy of |ψ⟩AB.
Though the number m of up spins that Alice (or Bob) finds in her (his) measurement

is typically close to np, it can fluctuate about this value. Sometimes Alice and Bob will

be lucky, and then will manage to distill more than H(p) Bell pairs per copy of |ψ(p)⟩AB.
But the probability of doing substantially better becomes negligible as n→ ∞.

The same idea applies to bipartite pure states in larger Hilbert spaces. If A and B are

d-dimensional systems, then |ψ⟩AB has the Schmidt decomposition

|ψ(X)⟩AB =
d−1∑
i=0

√
p(x) |x⟩A ⊗ |x⟩B, (10.187)
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where X is the classical ensemble {x, p(x)}, and H(ρA) = H(ρB) = H(X). The Schmidt

decomposition of n copies of ψ⟩ is
d−1∑

x1,x2,...,xn=0

√
p(x1)p(x2) . . . p(xn) |x1x2 . . . xn⟩An ⊗ |x1x2 . . . xn⟩Bn . (10.188)

Now Alice (or Bob) can measure the total number of |0⟩’s, the total number of |1⟩’s, etc.
in her (his) possession. If she finds m0|0⟩’s, m1|1⟩’s, etc., then her measurement prepares

a maximally entangled state with Schmidt number

D(m0,m1, . . . ,md−1) =
n!

m0!m1! . . .md−1!
(10.189)

and this outcome occurs with probability

p(m) = D(m0,m1, . . . ,md−1)p(0)
m0p(1)m1 . . . p(d−1)md−1 . (10.190)

For n large, Alice will typically find mx ≈ np(x), and again the probability of a large

deviation is small, so that, from Stirling’s approximation

2n(H(X)−o(1)) ≤ D ≤ 2n(H(X)+o(1)) (10.191)

with high probability. Thus, asymptotically for n → ∞, n(H(ρA) − o(1)) high-fidelity

Bell pairs can be distilled from n copies of |ψ⟩, establishing that ED(|ψ⟩) ≥ H(ρA), and

therefore ED(|ψ⟩) = EC(|ψ⟩) = E(|ψ⟩).
This entanglement concentration protocol uses local operations but does not require

any classical communication. When Alice and Bob do the same measurement they al-

ways get the same outcome, so there is no need for them to communicate. Classical

communication really is necessary, though, to perform entanglement dilution. The pro-

tocol we described here, based on teleportation, requires two bits of classical one-way

communication per Bell pair consumed; in a more clever protocol this can be reduced

to O(
√
n) bits, but no further. Since the classical communication cost is sublinear in n,

the number of bits of classical communication needed per copy of |ψ⟩ becomes negligible

in the limit n→ ∞.

Here we have discussed the entanglement cost and distillable entanglement for bipar-

tite pure states. An achievable rate for distilling Bell pairs from bipartite mixed states

will be derived in §10.8.2.

10.5 Quantifying Mixed-State Entanglement

10.5.1 Asymptotic irreversibility under LOCC

The entanglement cost EC and the distillable entanglement ED are natural and oper-

ationally meaningful ways to quantify entanglement. It’s quite satisfying to find that,

because entanglement dilution and concentration are asymptotically reversible for pure

states, these two measures of pure-state bipartite entanglement agree, and provide an-

other operational role for the von Neumann entropy of a marginal quantum state.

We can define EC and ED for bipartite mixed states just as we did for pure states, but

the story is more complicated — when we prepare many copies of a mixed state shared by

Alice and Bob, the dilution of Bell pairs is not in general reversible, even asymptotically,

and the distillable entanglement can be strictly less than the entanglement cost, though

it can never be larger. There are even bipartite mixed states with nonzero entanglement
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cost and zero distillable entanglement, a phenomenon called bound entanglement. This

irreversibility is not shocking; any bipartite operation which maps many copies of the

pure state |ϕ+⟩AB to many copies of the mixed state ρAB necessarily discards some

information to the environment, and we don’t normally expect a process that forgets

information to be reversible.

This separation between EC and ED raises the question, what is the preferred way to

quantify the amount of entanglement when two parties share a mixed quantum state?

The answer is: it depends. Many different measures of bipartite mixed-state entangle-

ment have been proposed, each with its own distinctive advantages and disadvantages.

Even though they do not always agree, both EC and ED are certainly valid measures.

A further distinction can be made between the rate ED1 at which entanglement can

be distilled with one-way communication between the parties, and the rate ED with

two-way communication. There are bipartite mixed states for which ED > ED1, and

even states for which ED is nonzero while ED1 is zero. In contrast to the pure-state

case, we don’t have nice formulas for the values of the various entanglement measures,

though there are useful upper and lower bounds. We will derive a lower bound on ED1

in §10.8.2 (the hashing inequality).

There are certain properties that any reasonable measure of bipartite quantum en-

tanglement should have. The most important is that it must not increase under local

operations and classical communication, because quantum entanglement cannot be cre-

ated by LOCC alone. A function on bipartite states that is nonincreasing under LOCC

is called an entanglement monotone. Note that an entanglement monotone will also be

invariant under local unitary operations UAB = UA ⊗ UB, for if UAB can reduce the

entanglement for any state, its inverse can increase entanglement.

A second important property is that a bipartite entanglement measure must vanish

for separable states. Recall from Chapter 4 that a bipartite mixed state is separable if

it can be expressed as a convex combination of product states,

ρAB =
∑
x

p(x) |α(x)⟩⟨α(x)|A ⊗ |β(x)⟩⟨β(x)|B. (10.192)

A separable state is not entangled, as it can be created using LOCC. Via classical com-

munication, Alice and Bob can establish a shared source of randomness, the distribution

X = {x, p(x)}. Then they may jointly sample from X; if the outcome is x, Alice prepares

|α(x)⟩ while Bob prepares |β(x)⟩.
A third desirable property for a bipartite entanglement measure is that it should

agree with E = EC = ED for bipartite pure states. Both the entanglement cost and the

distillable entanglement respect all three of these properties.

We remark in passing that, despite the irreversibility of entanglement dilution under

LOCC, there is a mathematically viable way to formulate a reversible theory of bipartite

entanglement which applies even to mixed states. In this formulation, we allow Alice

and Bob to perform arbitrary bipartite operations that are incapable of creating entan-

glement; these include LOCC as well as additional operations which cannot be realized

using LOCC. In this framework, dilution and concentration of entanglement become

asymptotically reversible even for mixed states, and a unique measure of entanglement

can be formulated characterizing the optimal rate of conversion between copies of ρAB
and Bell pairs using these non-entangling operations.

Irreversible bipartite entanglement theory under LOCC, and also the reversible theory

under non-entangling bipartite operations, are both examples of resource theories. In the
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resource theory framework, one or more parties are able to perform some restricted class

of operations, and they are capable of preparing a certain restricted class of states using

these operations. In addition, the parties may also have access to resource states, which

are outside the class they can prepare on their own. Using their restricted operations,

they can transform resource states from one form to another, or consume resource states

to perform operations beyond what they could achieve with their restricted operations

alone. The name “resource state” conveys that such states are valuable because they

may be consumed to do useful things.

In a two-party setting, where LOCC is allowed or more general non-entangling oper-

ations are allowed, bipartite entangled states may be regarded as a valuable resource.

Resource theory also applies if the allowed operations are required to obey certain sym-

metries; then states breaking this symmetry become a resource. In thermodynamics,

states deviating from thermal equilibrium are a resource. Entanglement theory, as a par-

ticularly well developed resource theory, provides guidance and tools which are broadly

applicable to many different interesting situations.

10.5.2 Squashed entanglement

As an example of an alternative bipartite entanglement measure, consider the squashed

entanglement Esq, defined by

Esq(ρAB) = inf

{
1

2
I(A;B|C) : ρAB = trC (ρABC)

}
(10.193)

The squashed entanglement of ρAB is the greatest lower bound on the quantum condi-

tional mutual information of all possible extensions of ρAB to a tripartite state ρABC ; it

can be shown to be an entanglement monotone. The locution “squashed” conveys that

choosing an optimal conditioning system C squashes out the non-quantum correlations

between A and B.

For pure states the extension is superfluous, so that

Esq(|ψ⟩AB) =
1

2
I(A;B) = H(A) = H(B) = E(|ψ⟩AB). (10.194)

For a separable state, we may choose the extension

ρABC =
∑
x

p(x) |α(x)⟩⟨α(x)|A ⊗ |β(x)⟩⟨β(x)|B ⊗ |x⟩⟨x|C . (10.195)

where {|x⟩C} is an orthonormal set; the state ρABC has the block-diagonal form

eq.(10.87) and hence I(A;B|C) = 0. Conversely, if ρAB has any extension ρABC with

I(A;B|C) = 0, then ρABC has the form eq.(10.87) and therefore ρAB is separable.

Esq is difficult to compute, because the infimum is to be evaluated over all possible

extensions, where the system C may have arbitrarily high dimension. This property

also raises the logical possibility that there are nonseparable states for which the infi-

mum vanishes; conceivably, though a nonseparable ρAB can have no finite-dimensional

extension for which I(A;B|C) = 0, perhaps I(A;B|C) can approach zero as the di-

mension of C increases. Fortunately, though this is not easy to show, it turns out that

Esq is strictly positive for any nonseparable state. In this sense, then, it is a faithful

entanglement measure, strictly positive if and only if the state is nonseparable.

One desirable property of Esq, not shared by EC and ED, is its additivity on tensor
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products (Exercise 10.6),

Esq(ρAB ⊗ ρA′B′) = Esq(ρAB) + Esq(ρA′B′). (10.196)

Though, unlike EC and ED, squashed entanglement does not have an obvious operational

meaning, any additive entanglement monotone which matches E for bipartite pure states

is bounded above and below by EC and ED respectively,

EC ≥ Esq ≥ ED. (10.197)

10.5.3 Entanglement monogamy

Classical correlations are polyamorous; they can be shared among many parties. If Alice

and Bob read the same newspaper, then they have information in common and become

correlated. Nothing prevents Claire from reading the same newspaper; then Claire is just

as strongly correlated with Alice and with Bob as Alice and Bob are with one another.

Furthermore, David, Edith, and all their friends can read the newspaper and join the

party as well.

Quantum correlations are not like that; they are harder to share. If Bob’s state is

pure, then the tripartite quantum state is a product ρB ⊗ ρAC , and Bob is completely

uncorrelated with Alice and Claire. If Bob’s state is mixed, then he can be entangled

with other parties. But if Bob is fully entangled with Alice (shares a pure state with

Alice), then the state is a product ρAB ⊗ρC ; Bob has used up all his ability to entangle

by sharing with Alice, and Bob cannot be correlated with Claire at all. Conversely, if

Bob shares a pure state with Claire, the state is ρA⊗ρBC , and Bob is uncorrelated with

Alice. Thus we say that quantum entanglement is monogamous.

Entanglement measures obey monogamy inequalities which reflect this tradeoff be-

tween Bob’s entanglement with Alice and with Claire in a three-party state. Squashed

entanglement, in particular, obeys a monogamy relation following easily from its defini-

tion, which was our primary motivation for introducing this quantity; we have

Esq(A;B) + Esq(A;C) ≤ Esq(A;BC). (10.198)

In particular, in the case of a pure tripartite state, Esq = H(A) is the (pure-state)

entanglement shared between A and BC. The inequality is saturated if Alice’s system

is divided into subsystems A1 and A2 such that the tripartite pure state is

|ψ⟩ABC = |ψ1⟩A1B ⊗ |ψ2⟩A2C . (10.199)

In general, combining eq.(10.197) with eq.(10.198) yields

ED(A;B) + ED(A;C) ≤ EC(A;BC); (10.200)

loosely speaking, the entanglement cost EC(A;BC) imposes a ceiling on Alice’s ability

to entangle with Bob and Claire individually, requiring her to trade in some distillable

entanglement with Bob to increase her distillable entanglement with Claire.

To prove the monogamy relation eq.(10.198), we note that mutual information obeys

a chain rule which is really just a restatement of the definition of conditional mutual

information:

I(A;BC) = I(A;C) + I(A;B|C). (10.201)
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A similar equation follows directly from the definition if we condition on a fourth system

D,

I(A;BC|D) = I(A;C|D) + I(A;B|CD). (10.202)

Now, Esq(A;BC) is the infimum of I(A;BC|D) over all possible extensions of ρABC to

ρABCD. But since ρABCD is also an extension of ρAB and ρAC , we have

I(A;BC|D) ≥ Esq(A;C) + Esq(A;B) (10.203)

for any such extension. Taking the infimum over all ρABCD yields eq.(10.198).

A further aspect of monogamy arises when we consider extending a quantum state to

more parties. We say that the bipartite state ρAB of systems A and B is k-extendable

if there is a (k+1)-part state ρAB1...Bk
whose marginal state on ABj matches ρAB for

each j = 1, 2, . . . k, and such that ρAB1...Bk
is invariant under permutations of the k

systems B1, B2 . . . Bk. Separable states are k-extendable for every k, and entangled pure

states are not even 2-extendable. Every entangled mixed state fails to be k-extendable

for some finite k, and we may regard the maximal value kmax for which such a symmetric

extension exists as a rough measure of how entangled the state is — bipartite entangled

states with larger and larger kmax are closer and closer to being separable.

10.6 Accessible Information

10.6.1 How much can we learn from a measurement?

Consider a game played by Alice and Bob. Alice prepares a quantum state drawn from

the ensemble E = {ρ(x), p(x)} and sends the state to Bob. Bob knows this ensemble, but

not the particular state that Alice chose to send. After receiving the state, Bob performs

a POVM with elements {E(y)} ≡ E, hoping to find out as much as he can about what

Alice sent. The conditional probability that Bob obtains outcome y if Alice sent ρ(x)

is p(y|x) = tr (E(y)ρ(x)), and the joint distribution governing Alice’s preparation and

Bob’s measurement is p(x, y) = p(y|x)p(x).
Before he measures, Bob’s ignorance about Alice’s state is quantified by H(X), the

number of “bits per letter” needed to specify x; after he measures his ignorance is

reduced to H(X|Y ) = H(XY )−H(Y ). The improvement in Bob’s knowledge achieved

by the measurement is Bob’s information gain, the mutual information

I(X;Y ) = H(X)−H(X|Y ). (10.204)

Bob’s best strategy (his optimal measurement) maximizes this information gain. The

best information gain Bob can achieve,

Acc(E) = max
E

I(X;Y ), (10.205)

is a property of the ensemble E called the accessible information of E .
If the states {ρ(x)} are mutually orthogonal they are perfectly distinguishable. Bob

can identify Alice’s state with certainty by choosing E(x) to be the projector onto the

support of ρ(x); Then p(y|x) = δx,y = p(x|y), hence H(X|Y ) = ⟨− log p(x|y)⟩ = 0 and

Acc(E) = H(X). Bob’s task is more challenging if Alice’s states are not orthogonal.

Then no measurement will identify the state perfectly, so H(X|Y ) is necessarily positive

and Acc(E) < H(X).
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Though there is no simple general formula for the accessible information of an ensem-

ble, we can derive a useful upper bound, called the Holevo bound. For the special case

of an ensemble of pure states E = {|φ(x)⟩, p(x)}, the Holevo bound becomes

Acc(E) ≤ H(ρ), where ρ =
∑
x

p(x)|φ(x)⟩⟨φ(x)|, (10.206)

and a sharper statement is possible for an ensemble of mixed states, as we will see.

Since the entropy for a quantum system with dimension d can be no larger than log d,

the Holevo bound asserts that Alice, by sending n qubits to Bob (d = 2n) can convey

no more than n bits of information. This is true even if Bob performs a sophisticated

collective measurement on all the qubits at once, rather than measuring them one at a

time.

Therefore, if Alice wants to convey classical information to Bob by sending qubits, she

can do no better than treating the qubits as though they were classical, sending each

qubit in one of the two orthogonal states {|0⟩, |1⟩} to transmit one bit. This statement is

not so obvious. Alice might try to stuff more classical information into a single qubit by

sending a state chosen from a large alphabet of pure single-qubit signal states, distributed

uniformly on the Bloch sphere. But the enlarged alphabet is to no avail, because as the

number of possible signals increases the signals also become less distinguishable, and

Bob is not able to extract the extra information Alice hoped to deposit in the qubit.

If we can send information more efficiently by using an alphabet of mutually orthog-

onal states, why should we be interested in the accessible information for an ensemble

of non-orthogonal states? There are many possible reasons. Perhaps Alice finds it eas-

ier to send signals, like coherent states, which are imperfectly distinguishable rather

than mutually orthogonal. Or perhaps Alice sends signals to Bob through a noisy chan-

nel, so that signals which are orthogonal when they enter the channel are imperfectly

distinguishable by the time they reach Bob.

The accessible information game also arises when an experimental physicist tries to

measure an unknown classical force using a quantum system as a probe. For example, to

measure the z-component of a magnetic field, we may prepare a spin-12 particle pointing

in the x-direction; the spin precesses for time t in the unknown field, producing an

ensemble of possible final states (which will be an ensemble of mixed states if the initial

preparation is imperfect, or if decoherence occurs during the experiment). The more

information we can gain about the final state of the spin, the more accurately we can

determine the value of the magnetic field.

10.6.2 Holevo bound

Recall that quantum mutual information obeys monotonicity — if a quantum channel

maps B to B′, then I(A;B) ≥ I(A;B′). We derive the Holevo bound by applying

monotonicity of mutual information to the accessible information game. We will suppose

that Alice records her chosen state in a classical register X and Bob likewise records

his measurement outcome in another register Y , so that Bob’s information gain is the

mutual information I(X;Y ) of the two registers. After Alice’s preparation of her system

A, the joint state of XA is

ρXA =
∑
x

p(x)|x⟩⟨x| ⊗ ρ(x). (10.207)
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Bob’s measurement is a quantum channel mapping A to AY according to

ρ(x) 7→
∑
y

M(y)ρ(x)M(y)† ⊗ |y⟩⟨y|, (10.208)

where M(y)†M(y) = E(y), yielding the state for XAY

ρ′
XAY =

∑
x,y

p(x)|x⟩⟨x| ⊗M(y)ρ(x)M(y)† ⊗ |y⟩⟨y|. (10.209)

Now we have

I(X;Y )ρ′ ≤ I(X;AY )ρ′ ≤ I(X;A)ρ, (10.210)

where the subscript indicates the state in which the mutual information is evaluated;

the first inequality uses strong subadditivity in the state ρ′, and the second uses mono-

tonicity under the channel mapping ρ to ρ′.

The quantity I(X;A) is an intrinsic property of the ensemble E ; it is denoted χ(E)
and called the Holevo chi of the ensemble. We have shown that however Bob chooses

his measurement his information gain is bounded above by the Holevo chi; therefore,

Acc(E) ≤ χ(E) := I(X;A)ρ. (10.211)

This is the Holevo bound.

Now let’s calculate I(X;A)ρ explicitly. We note that

H(XA) = −trXA

(∑
x

p(x)|x⟩⟨x| ⊗ ρ(x) log

(∑
x′

p(x′)|x′⟩⟨x′| ⊗ ρ(x′)

))
= −

∑
x

trA p(x)ρ(x) (log p(x) + logρ(x))

= H(X) +
∑
x

p(x)H(ρ(x)), (10.212)

and therefore

H(A|X) = H(XA)−H(X) =
∑
x

p(x)H(ρ(x)). (10.213)

Using I(X;A) = H(A)−H(A|X), we then find

χ(E) = I(X;A) = H(ρA)−
∑
x

p(x)H(ρA(x)) ≡ H(A)E − ⟨H(A)⟩E (10.214)

For an ensemble of pure states, χ is just the entropy of the density operator arising from

the ensemble, but for an ensemble E of mixed states it is a strictly smaller quantity – the

difference between the entropy H(ρE) of the convex sum of signal states and the convex

sum ⟨H⟩E of the signal state entropies; this difference is always nonnegative because of

the concavity of the entropy function (or because mutual information is nonnegative).

10.6.3 Monotonicity of Holevo chi

Since Holevo chi is the mutual information I(X;A) of the classical register X and the

quantum system A, the monotonicity of mutual information also implies the monotonic-

ity of χ. If N : A→ A′ is a quantum channel, then I(X;A′) ≤ I(X;A) and therefore

χ(E ′) ≤ χ(E), (10.215)
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where

E = {ρ(x)), p(x)} and E ′ = {ρ′(x) = N (ρ(x)), p(x)}. (10.216)

A channel cannot increase the Holevo chi of an ensemble.

Its monotonicity provides a further indication that χ(E) is a useful measure of the

information encoded in an ensemble of quantum states; the decoherence described by

a quantum channel can reduce this quantity, but never increases it. In contrast, the

von Neumann entropy may either increase or decrease under the action of a channel.

Mapping pure states to mixed states can increase H, but a channel might instead map

the mixed states in an ensemble to a fixed pure state |0⟩⟨0|, decreasing H and improving

the purity of each signal state, but without improving the distinguishability of the states.

We discussed the asymptotic limit H(ρ) on quantum compression per letter in §10.3.2.
There we considered unitary decoding; invoking the monotonicity of Holevo chi clarifies

why more general decoders cannot do better. Suppose we compress and decompress the

ensemble E⊗n using an encoder Ne and a decoder Nd, where both maps are quantum

channels:

E⊗n Ne−→ Ẽ(n) Nd−→ Ẽ ′(n) ≈ E⊗n (10.217)

The Holevo chi of the input pure-state product ensemble is additive, χ(E⊗n) = H(ρ⊗n) =

nH(ρ), and χ of a d-dimensional system is no larger than log2 d; therefore if the ensemble

Ẽ(n) is compressed to q qubits per letter, then because of the monotonicity of χ the

decompressed ensemble Ẽ ′(n) has Holevo chi per letter 1
nχ(Ẽ

′(n)) ≤ q. If the decompressed

output ensemble has high fidelity with the input ensemble, its χ per letter should nearly

match the χ per letter of the input ensemble, hence

q ≥ 1

n
χ(Ẽ ′(n)) ≥ H(ρ)− δ (10.218)

for any positive δ and sufficiently large n. We conclude that high-fidelity compression

to fewer than H(ρ) qubits per letter is impossible asymptotically, even when the com-

pression and decompression maps are arbitrary channels.

10.6.4 Improved distinguishability through coding: an example

To better acquaint ourselves with the concept of accessible information, let’s consider a

single-qubit example. Alice prepares one of the three possible pure states

|φ1⟩ = | ↑n̂1⟩ =
(
1

0

)
,

|φ2⟩ = | ↑n̂2⟩ =

(
−1

2√
3
2

)
,

|φ3⟩ = | ↑n̂3⟩ =

(
−1

2

−
√
3
2

)
; (10.219)

a spin-12 object points in one of three directions that are symmetrically distributed in

the xz-plane. Each state has a priori probability 1
3 . Evidently, Alice’s signal states are

nonorthogonal:

⟨φ1|φ2⟩ = ⟨φ1|φ3⟩ = ⟨φ2|φ3⟩ = −1

2
. (10.220)
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Bob’s task is to find out as much as he can about what Alice prepared by making a

suitable measurement. The density matrix of Alice’s ensemble is

ρ =
1

3
(|φ1⟩⟨φ1|+ |φ2⟩⟨φ2|+ |φ3⟩⟨φ3|) =

1

2
I, (10.221)

which has H(ρ) = 1. Therefore, the Holevo bound tells us that the mutual information

of Alice’s preparation and Bob’s measurement outcome cannot exceed 1 bit.

In fact, though, the accessible information is considerably less than the one bit allowed

by the Holevo bound. In this case, Alice’s ensemble has enough symmetry that it is not

hard to guess the optimal measurement. Bob may choose a POVM with three outcomes,

where

Ea =
2

3
(I − |φa⟩⟨φa|), a = 1, 2, 3; (10.222)

we see that

p(a|b) = ⟨φb|Ea|φb⟩ =
{

0 a = b,
1
2 a ̸= b.

(10.223)

The measurement outcome a excludes the possibility that Alice prepared a, but leaves

equal a posteriori probabilities
(
p = 1

2

)
for the other two states. Bob’s information gain

is

I = H(X)−H(X|Y ) = log2 3− 1 = .58496. (10.224)

To show that this measurement is really optimal, we may appeal to a variation on a

theorem of Davies, which assures us that an optimal POVM can be chosen with three

Ea’s that share the same three-fold symmetry as the three states in the input ensemble.

This result restricts the possible POVM’s enough so that we can check that eq. (10.222)

is optimal with an explicit calculation. Hence we have found that the ensemble E =

{|φa⟩, pa = 1
3} has accessible information.

Acc(E) = log2

(
3

2

)
= .58496... (10.225)

The Holevo bound is not saturated.

Now suppose that Alice has enough cash so that she can afford to send two qubits to

Bob, where again each qubit is drawn from the ensemble E . The obvious thing for Alice

to do is prepare one of the nine states

|φa⟩ ⊗ |φb⟩, a, b = 1, 2, 3, (10.226)

each with pab = 1/9. Then Bob’s best strategy is to perform the POVM eq. (10.222)

on each of the two qubits, achieving a mutual information of .58496 bits per qubit, as

before.

But, determined to do better, Alice and Bob decide on a different strategy. Alice will

prepare one of three two-qubit states

|Φa⟩ = |φa⟩ ⊗ |φa⟩, a = 1, 2, 3, (10.227)

each occurring with a priori probability pa = 1/3. Considered one-qubit at a time,

Alice’s choice is governed by the ensemble E , but now her two qubits have (classical)

correlations – both are prepared the same way.

The three |Φa⟩’s are linearly independent, and so span a three-dimensional subspace
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of the four-dimensional two-qubit Hilbert space. In Exercise 10.9, you will show that the

density operator

ρ =
1

3

(
3∑

a=1

|Φa⟩⟨Φa|

)
, (10.228)

has the nonzero eigenvalues 1/2, 1/4, 1/4, so that

H(ρ) = −1

2
log2

1

2
− 2

(
1

4
log2

1

4

)
=

3

2
. (10.229)

The Holevo bound requires that the accessible information per qubit is no more than

3/4 bit, which is at least consistent with the possibility that we can exceed the .58496

bits per qubit attained by the nine-state method.

Naively, it may seem that Alice won’t be able to convey as much classical information

to Bob, if she chooses to send one of only three possible states instead of nine. But on

further reflection, this conclusion is not obvious. True, Alice has fewer signals to choose

from, but the signals are more distinguishable; we have

⟨Φa|Φb⟩ =
1

4
, a ̸= b, (10.230)

instead of eq. (10.220). It is up to Bob to exploit this improved distinguishability in his

choice of measurement. In particular, Bob will find it advantageous to perform collective

measurements on the two qubits instead of measuring them one at a time.

It is no longer obvious what Bob’s optimal measurement will be. But Bob can invoke

a general procedure that, while not guaranteed optimal, is usually at least pretty good.

We’ll call the POVM constructed by this procedure a “pretty good measurement” (or

PGM).

Consider some collection of vectors |Φ̃a⟩ that are not assumed to be orthogonal or

normalized. We want to devise a POVM that can distinguish these vectors reasonably

well. Let us first construct

G =
∑
a

|Φ̃a⟩⟨Φ̃a|; (10.231)

This is a positive operator on the space spanned by the |Φ̃a⟩’s. Therefore, on that

subspace, G has an inverse, G−1 and that inverse has a positive square root G−1/2.

Now we define

Ea = G−1/2|Φ̃a⟩⟨Φ̃a|G−1/2, (10.232)

and we see that ∑
a

Ea = G−1/2

(∑
a

|Φ̃a⟩⟨Φ̃a|

)
G−1/2

= G−1/2GG−1/2 = I, (10.233)

on the span of the |Φ̃a⟩’s. If necessary, we can augment these Ea’s with one more positive

operator, the projection E0 onto the orthogonal complement of the span of the |Φ̃a⟩’s,
and so construct a POVM. This POVM is the PGM associated with the vectors |Φ̃a⟩.
In the special case where the |Φ̃a⟩’s are orthogonal,

|Φ̃a⟩ =
√
λa|ϕa⟩, (10.234)
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(where the |ϕa⟩’s are orthonormal), we have

Ea =
∑
b,c

(|ϕb⟩λ
−1/2
b ⟨ϕb|)(|ϕa⟩λa⟨ϕa|)(|ϕc⟩λ−1/2

c ⟨ϕc|)

= |ϕa⟩⟨ϕa|; (10.235)

this is the orthogonal measurement that perfectly distinguishes the |ϕa⟩’s and so clearly

is optimal. If the |Φ̃a⟩’s are linearly independent but not orthogonal, then the PGM

is again an orthogonal measurement (because n one-dimensional operators in an n-

dimensional space can constitute a POVM only if mutually orthogonal — see Exercise

3.11), but in that case the measurement may not be optimal.

In Exercise 10.9, you’ll construct the PGM for the vectors |Φa⟩ in eq. (10.227), and

you’ll show that

p(a|a) = ⟨Φa|Ea|Φa⟩ =
1

3

(
1 +

1√
2

)2

= .971405,

p(b|a) = ⟨Φa|Eb|Φa⟩ =
1

6

(
1− 1√

2

)2

= .0142977 (10.236)

(for b ̸= a). It follows that the conditional entropy of the input is

H(X|Y ) = .215894, (10.237)

and since H(X) = log2 3 = 1.58496, the information gain is

I(X;Y ) = H(X)−H(X|Y ) = 1.369068, (10.238)

a mutual information of .684534 bits per qubit. Thus, the improved distinguishability

of Alice’s signals has indeed paid off – we have exceeded the .58496 bits that can be

extracted from a single qubit. We still didn’t saturate the Holevo bound (I ≤ 1.5 in this

case), but we came a lot closer than before.

This example, first described by Peres and Wootters, teaches some useful lessons.

First, Alice is able to convey more information to Bob by “pruning” her set of codewords.

She is better off choosing among fewer signals that are more distinguishable than more

signals that are less distinguishable. An alphabet of three letters encodes more than an

alphabet of nine letters.

Second, Bob is able to read more of the information if he performs a collective measure-

ment instead of measuring each qubit separately. His optimal orthogonal measurement

projects Alice’s signal onto a basis of entangled states.

10.6.5 Classical capacity of a quantum channel

This example illustrates how coding and collective measurement can enhance accessible

information, but while using the code narrowed the gap between the accessible infor-

mation and the Holevo chi of the ensemble, it did not close the gap completely. As is

often the case in information theory, we can characterize the accessible information more

precisely by considering an asymptotic i.i.d. setting. To be specific, we’ll consider the

task of sending classical information reliably through a noisy quantum channel NA→B.

An ensemble of input signal states E = {ρ(x), p(x)} prepared by Alice is mapped by

the channel to an ensemble of output signals E ′ = {N (ρ(x)), p(x)}. If Bob measures the
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output his optimal information gain

Acc(E ′) ≤ I(X;B) = χ(E ′) (10.239)

is bounded above by the Holevo chi of the output ensemble E ′. To convey as much infor-

mation through the channel as possible, Alice and Bob may choose the input ensemble

E that maximizes the Holevo chi of the output ensemble E ′. The maximum value

χ(N ) := max
E

χ(E ′) = max
E

I(X;B) (10.240)

of χ(E ′) is a property of the channel, which we will call the Holevo chi of N .

As we’ve seen, Bob’s actual optimal information gain in this single-shot setting may

fall short of χ(E ′) in general. But instead of using the channel just once, suppose that

Alice and Bob use the channel n≫ 1 times, where Alice sends signal states chosen from

a code, and Bob performs an optimal measurement to decode the signals he receives.

Then an information gain of χ(N ) bits per letter really can be achieved asymptotically

as n→ ∞.

Let’s denote Alice’s ensemble of encoded n-letter signal states by Ẽ(n), denote the

ensemble of classical labels carried by the signals by X̃n, and denote Bob’s ensemble of

measurement outcomes by Ỹ n. Let’s say that the code has rate R if Alice may choose

from among 2nR possible signals to send. If classical information can be sent through

the channel with rate R−o(1) such that Bob can decode the signal with negligible error

probability as n→ ∞, then we say the rate R is achievable. The classical capacity C(N )

of the quantum channel NA→B is the supremum of all achievable rates.

As in our discussion of the capacity of a classical channel in §10.1.5, we suppose

that X̃n is the uniform ensemble over the 2nR possible messages, so that H(X̃n) = nR.

Furthermore, the conditional entropy per letter 1
nH(X̃n|Ỹ n)) approaches zero as n→ ∞

if the error probability is asymptotically negligible; therefore,

R ≤ 1

n

(
I(X̃n; Ỹ n) + o(1)

)
≤ 1

n

(
max
E(n)

I(Xn;Bn) + o(1)

)
=

1

n

(
χ(N⊗n) + o(1)

)
, (10.241)

where we obtain the first inequality as in eq.(10.52) and the second inequality by invoking

the Holevo bound, optimized over all possible n-letter input ensembles. We therefore

infer that

C(N ) ≤ lim
n→∞

1

n
χ
(
N⊗n) ; (10.242)

the classical capacity is bounded above by the asymptotic Holevo chi per letter of the

product channel N⊗n.

In fact this upper bound is actually an achievable rate, and hence equal to the classical

capacity C(N ). However, this formula for the classical capacity is not very useful as it

stands, because it requires that we optimize the Holevo chi over message ensembles of

arbitrary length; we say that the formula for capacity is regularized if, as in this case, it

involves taking a limit in which the number of channel uses tends to infinity. It would be

far preferable to reduce our expression for C(N ) to a single-letter formula involving just

one use of the channel. In the case of a classical channel, the reduction of the regularized

expression to a single-letter formula was possible, because the conditional entropy for n

uses of the channel is additive as in eq.(10.49).
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For quantum channels the situation is more complicated, as channels are known to

exist such that the Holevo chi is strictly superadditive:

χ (N1 ⊗N2) > χ (N1) + χ (N2) . (10.243)

Therefore, at least for some channels, we are stuck with the not-very-useful regularized

formula for the classical capacity. But we can obtain a single-letter formula for the

optimal achievable communication rate if we put a restriction on the code used by Alice

and Bob. In general, Alice is entitled to choose input codewords which are entangled

across the many uses of the channel, and when such entangled codes are permitted

the computation of the classical channel capacity may be difficult. But suppose we

demand that all of Alice’s codewords are product states. With that proviso the Holevo

chi becomes subadditive, and we may express the optimal rate as

C1 (N ) = χ(N ). (10.244)

C1(N ) is called the product-state capacity of the channel.

Let’s verify the subadditivity of χ for product-state codes. The product channel N⊗n

maps product states to product states; hence if Alice’s input signals are product states

then so are Bob’s output signals, and we can express Bob’s n-letter ensemble as

E(n) = {ρ(x1)⊗ ρ(x2)⊗ · · · ⊗ ρ(xn), p(x1x2 . . . xn)}, (10.245)

which has Holevo chi

χ(E(n)) = I(Xn;Bn) = H(Bn)−H(Bn|Xn). (10.246)

(Here E(n) is the output ensemble received by Bob when Alice sends product-state

codewords, but to simplify the notation we have dropped the prime (indicating output)

and tilde (indicating codewords) used earlier, e.g. in eq.(10.239) and eq.(10.241). We

do not assume that the probability distribution p(x1x2 . . . xn) factorizes; hence the n

letters received by Bob, though unentangled, can be classically correlated.) While the

von Neumann entropy is subadditive,

H(Bn) ≤
n∑
i=1

H(Bi); (10.247)

the (negated) conditional entropy

−H(Bn|Xn) = −
∑
x⃗

p(x⃗) H (ρ(x⃗)) (10.248)

(see eq.(10.214)) is not subadditive in general. But for the product-state ensemble

eq.(10.245), since the entropy of a product is additive, we have

H(Bn|Xn) =
∑

x1,x2,...,xn

p(x1x2, . . . xn)

(
n∑
i=1

H (ρ(xi))

)

=
n∑
i=1

∑
xi

pi(xi)H(ρ(xi)) =
n∑
i=1

H(Bi|Xi) (10.249)

where Xi = {xi, pi(xi)} is the marginal probability distribution for the ith letter.

Eq.(10.249) is a quantum analog of eq.(10.49), which holds for product-state ensembles
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but not in general for entangled ensembles. Combining eq.(10.246), (10.247), (10.249),

we have

I(Xn;Bn) ≤
n∑
i=1

(H(Bi)−H(Bi|Xi)) =
∑
i

I(Xi;Bi) ≤ nχ(N ). (10.250)

Therefore the Holevo chi of a channel is subadditive when restricted to product-state

codewords, as we wanted to show.

We won’t give a careful argument here that C1(N ) is an asymptotically achievable rate

using product-state codewords; we’ll just give a rough sketch of the idea. We demonstrate

achievability with a random coding argument similar to Shannon’s. Alice fixes an input

ensemble E = {ρ(x), p(x)}, and samples from the product ensemble E⊗n to generate a

codeword; that is, the codeword

ρ(x⃗) = ρ(x1)⊗ ρ(x2)⊗ · · · ⊗ ρ(xn) (10.251)

is selected with probability p(x⃗) = p(x1)p(x2) . . . p(xn). (In fact Alice should choose each

ρ(x⃗) to be pure to optimize the communication rate.) This codeword is sent via n uses

of the channel N , and Bob receives the product state

N⊗n (ρ(x⃗)) = N (ρ(x1))⊗N (ρ(x2))⊗ · · · ⊗ N (ρ(xn)). (10.252)

Averaged over codewords, the joint state of Alice’s classical registerXn and Bob’s system

Bn is

ρXnBn =
∑
x⃗

p(x⃗) |x⃗⟩⟨x⃗| ⊗ N⊗n(ρ(x⃗)). (10.253)

To decode, Bob performs a POVM designed to distinguish the codewords effectively;

a variant of the pretty good measurement described in §10.6.4 does the job well enough.

The state Bob receives is mostly supported on a typical subspace with dimension

2n(H(B)+o(1)), and for each typical codeword that Alice sends, what Bob receives is

mostly supported on a much smaller typical subspace with dimension 2n(H(B|X)+o(1)).

The key point is that ratio of the dimensions of these spaces is exponential in the mutual

information of X and B:

2n(H(B|X)+o(1))

2n(H(B)−o(1)) = 2−n(I(X;B)−o(1)) (10.254)

Each of Bob’s POVM elements has support on the typical subspace arising from a

particular one of Alice’s codewords. The probability that any codeword is mapped purely

by accident to the decoding subspace of a different codeword is suppressed by the ratio

eq.(10.254). Therefore, the probability of a decoding error remains small even when

there are 2nR codewords to distinguish, for R = I(X;B)− o(1).

We complete the argument with standard Shannonisms. Since the probability of a

decoding error is small when we average over codes, it must also be small, averaged over

codewords, for a particular sequence of codes. Then by pruning half of the codewords,

reducing the rate by a negligible amount, we can ensure that the decoding errors are

improbable for every codeword in the code. Therefore I(X;B) is an achievable rate for

classical communication. Optimizing over all product-state input ensembles, we obtain

eq.(10.244).

To turn this into an honest argument, we would need to specify Bob’s decoding mea-

surement more explicitly and do a careful error analysis. This gets a bit technical, so
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we’ll skip the details. Somewhat surprisingly, though, it turns out to be easier to prove

capacity theorems when quantum channels are used for other tasks besides sending

classical information. We’ll turn to that in §10.7.

10.6.6 Entanglement-breaking channels

Though Holevo chi is superadditive for some quantum channels, there are classes of

channels for which chi is additive, and for any such channel N the classical capacity

is C = χ(N ) without any need for regularization. For example, consider entanglement-

breaking channels. We say that NA→B is entanglement breaking if for any input state

ρRA, I ⊗ N (ρRA) is a separable state on RA — the action of N on A always breaks

its entanglement with R. We claim that if N1 is entanglement breaking, and N2 is an

arbitrary channel, then

χ (N1 ⊗N2) ≤ χ(N1) + χ(N2). (10.255)

To bound the chi of the product channel, consider an input ensemble

ρXA1A2
=
∑
x

p(x) |x⟩⟨x| ⊗ ρ(x)A1A2 , (10.256)

which is mapped by N1 ⊗N2 to

ρ′
XB1B2

= (I ⊗N1 ⊗N2)
(
ρXA1A2

)
. (10.257)

By tracing out the second output system we find

ρ′
XB1

= I ⊗N1

(
ρXA1

)
=
∑
x

p(x) |x⟩⟨x| ⊗ N1 (ρ(x)A1) , (10.258)

which, by the definition of χ(N1) implies

I(X;B1)ρ′ ≤ χ(N1). (10.259)

We can easily check that, for any three systems A, B, and C,

I(A;BC) = I(A;B) + I(AB;C)− I(C;B) ≤ I(A;B) + I(AB;C), (10.260)

so that in particular

I(X;B1B2)ρ′ ≤ χ(N1) + I(XB1;B2)ρ′ . (10.261)

Eq.(10.261) holds for any channels N1 and N2; now to obtain eq.(10.255) it suffices to

show that

I(XB1;B2)ρ′ ≤ χ(N2) (10.262)

for entanglement breaking N1.

If N1 is entanglement breaking, then ρ(x)A1A2 is mapped by N1 to a separable state:

N1 ⊗ I : ρ(x)A1A2 7→
∑
y

p(y|x) σ(x, y)B1 ⊗ τ (x, y)A2 . (10.263)

Therefore,

ρ′
XB1B2

=
∑
x,y

p(x)p(y|x)|x⟩⟨x| ⊗ σ(x, y)B1 ⊗ [N2 (τ (x, y))]B2
(10.264)
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may be regarded as the marginal state (after tracing out Y ) of

ω′
XY B1B2

=
∑
x,y

p(x, y)|x, y⟩⟨x, y| ⊗ σ(x, y)⊗N2 (τ (x, y)) . (10.265)

Furthermore, because ω′ becomes a product state when conditioned on (x, y), we find

I(B1;B2|XY )ω′ = 0, (10.266)

and using strong subadditivity together with the definition of conditional mutual infor-

mation we obtain

I(XB1;B2)ρ′ = I(XB1;B2)ω′ ≤ I(XY B1;B2)ω′

= I(XY ;B2)ω′ + I(B1;B2|XY )ω′ = I(XY ;B2)ω′ . (10.267)

Finally, noting that

trB1 ω′
XY B1B2

=
∑
x,y

p(x, y)|x, y⟩⟨x, y| ⊗ N2 (τ (x, y)) (10.268)

and recalling the definition of χ(N2), we see that I(XY ;B2)ω′ ≤ χ(N2), establishing

eq.(10.262), and therefore eq.(10.255).

An example of an entanglement-breaking channel is a classical-quantum channel, also

called a c-q channel, which acts according to

NA→B : ρA 7→
∑
x

⟨x|ρA|x⟩σ(x)B, (10.269)

where {|x⟩} is an orthonormal basis. In effect, the channel performs a complete orthog-

onal measurement on the input state and then prepares an output state conditioned on

the measurement outcome. The measurement breaks the entanglement between system

A and any other system with which it was initially entangled. Therefore, c-q channels

are entanglement breaking and have additive Holevo chi.

10.7 Quantum Channel Capacities and Decoupling

10.7.1 Coherent information and the quantum channel capacity

As we have already emphasized, it’s marvelous that the capacity for a classical channel

can be expressed in terms of the optimal correlation between input and output for a

single use of the channel,

C := max
X

I(X;Y ). (10.270)

Another pleasing feature of this formula is its robustness. For example, the capacity

does not increase if we allow the sender and receiver to share randomness, or if we

allow feedback from receiver to sender. But for quantum channels the story is more

complicated. We’ve seen already that no simple single-letter formula is known for the

classical capacity of a quantum channel, if we allow entanglement among the channel

inputs, and we’ll soon see that the same is true for the quantum capacity. In addition, it

turns out that entanglement shared between sender and receiver can boost the classical

and quantum capacities of some channels, and so can “backward” communication from

receiver to sender. There are a variety of different notions of capacity for quantum

channels, all reasonably natural, and all with different achievable rates.

While Shannon’s theory of classical communication over noisy classical channels is
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pristine and elegant, the same cannot be said for the theory of communication over noisy

quantum channels, at least not in its current state. It’s still a work in progress. Perhaps

some day another genius like Shannon will construct a beautiful theory of quantum

capacities. For now, at least there are a lot of interesting things we can say about

achievable rates. Furthermore, the tools that have been developed to address questions

about quantum capacities have other applications beyond communication theory.

The most direct analog of the classical capacity of a classical channel is the quantum

capacity of a quantum channel, unassisted by shared entanglement or feedback. The

quantum channel NA→B is a TPCP map from HA to HB, and Alice is to use the

channel n times to convey a quantum state to Bob with high fidelity. She prepares her

state |ψ⟩ in a code subspace

H(n) ⊆ H⊗n
A (10.271)

and sends it to Bob, who applies a decoding map, attempting to recover |ψ⟩. The rate

R̄ of the code is the number of encoded qubits sent per channel use,

R̄ =
1

n
log2 dim

(
H(n)

)
. (10.272)

(Here, deviating from our earlier practice, we have used R̄ rather than R to denote the

communication rate; from now on we we will use R to denote the reference system, which

is introduced in the next paragraph.) We say that the rate R̄ is achievable if there is a

sequence of codes with increasing n such that for any ε, δ > 0 and for sufficiently large

n the rate is at least R̄− δ and Bob’s recovered state ρ has fidelity F = ⟨ψ|ρ|ψ⟩ ≥ 1− ε.
The quantum channel capacity Q(N ) is the supremum of all achievable rates.

There is a regularized formula for Q(N ). To understand the formula we first need

to recall that any channel NA→B has an isometric Stinespring dilation UA→BE where

E is the channel’s “environment.” Furthermore, any input density operator ρA has a

purification; if we introduce a reference system R, for any ρA there is a pure state ψRA
such that ρA = trR (|ψ⟩⟨ψ|). (I will sometimes use ψ rather than the Dirac ket |ψ⟩
to denote a pure state vector, when the context makes the meaning clear and the ket

notation seems unnecessarily cumbersome.) Applying the channel’s dilation to ψRA, we

obtain an output pure state ϕRBE , which we represent graphically as:

R

A U B

E

- -

-

We then define the one-shot quantum capacity of the channel N by

Q1(N ) := max
A

(−H(R|B)ϕRBE
) . (10.273)

Here the maximum is taken over all possible input density operators {ρA}, and H(R|B)

is the quantum conditional entropy

H(R|B) = H(RB)−H(B) = H(E)−H(B), (10.274)

where in the last equality we used H(RB) = H(E) in a pure state of RBE. The quantity
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−H(R|B) has such a pivotal role in quantum communication theory that it deserves to

have its own special name. We call it the coherent information from R to B and denote

it

Ic(R ⟩B)ϕ = −H(R|B)ϕ = H(B)ϕ −H(E)ϕ. (10.275)

This quantity does not depend on how the purification ϕ of the density operator ρA is

chosen; any one purification can be obtained from any other by a unitary transformation

acting on R alone, which does not alter H(B) or H(E). Indeed, since the expression

H(B)−H(E) only depends on the marginal state of BE, for the purpose of computing

this quantity we could just as well consider the input to the channel to be the mixed state

ρA obtained from ψRA by tracing out the reference system R. Furthermore, the coherent

information does not depend on how we choose the dilation of the quantum channel;

given a purification of the input density operator ρA, Ic(R ⟩B)ϕ = H(B) − H(RB) is

determined by the output density operator of RB.

For a classical channel, H(R|B) is always nonnegative and the coherent information

is never positive. In the quantum setting, Ic(R ⟩B) is positive if the reference system R

is more strongly correlated with the channel output B than with the environment E.

Indeed, an alternative way to express the coherent information is

Ic(R ⟩B) =
1

2
(I(R;B)− I(R;E)) = H(B)−H(E), (10.276)

where we note that (because ϕRBE is pure)

I(R;B) = H(R) +H(B)−H(RB) = H(R) +H(B)−H(E),

I(R;E) = H(R) +H(E)−H(RE) = H(R) +H(E)−H(B). (10.277)

Now we can state the regularized formula for the quantum channel capacity — it is

the optimal asymptotic coherent information per letter

Q(NA→B) = lim
n→∞

max
An

1

n
Ic(R

n⟩Bn)ϕRnBnEn , (10.278)

where the input density operator ρAn is allowed to be entangled across the n channel

uses. If coherent information were subadditive, we could reduce this expression to a

single-letter quantity, the one-shot capacity Q1(N ). But, unfortunately, for some chan-

nels the coherent information can be superadditive, in which case the regularized formula

is not very informative. At least we can say that Q1(N ) is an achievable rate, and there-

fore a lower bound on the capacity.

10.7.2 The decoupling principle

Before we address achievability, let’s understand why eq.(10.278) is an upper bound on

the capacity. First we note that the monotonicity of mutual information implies a corre-

sponding monotonicity property for the coherent information. Suppose that the channel

NA→B
1 is followed by a channel NB→C

2 . Because mutual information is monotonic we

have

I(R;A) ≥ I(R;B) ≥ I(R;C), (10.279)

which can also be expressed as

H(R)−H(R|A) ≥ H(R)−H(R|B) ≥ H(R)−H(R|C), (10.280)
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and hence

Ic(R ⟩A) ≥ Ic(R ⟩B) ≥ Ic(R ⟩C). (10.281)

A quantum channel cannot increase the coherent information, which has been called the

quantum data-processing inequality.

Suppose now that ρA is a quantum code state, and that the two channels acting in

succession are a noisy channel NA→B and the decoding map DB→B̂ applied by Bob to

the channel output in order to recover the channel input. Consider the action of the

dilation UA→BE of N followed by the dilation V B→B̂B′
of D on the input purification

ψRA, under the assumption that Bob is able to recover perfectly:

ψRA
U−→ ϕRBE

V−→ ψ̃RB̂B′E = ψRB̂ ⊗ χB′E . (10.282)

If the decoding is perfect, then after decoding Bob holds in system B̂ the purification

of the state of R, so that

H(R) = Ic(R ⟩A)ψ = Ic(R ⟩B̂)ψ̃. (10.283)

Since the initial and final states have the same coherent information, the quantum data

processing inequality implies that the same must be true for the intermediate state

ϕRBE :

H(R) = Ic(R ⟩B) = H(B)−H(E)

=⇒ H(B) = H(RE) = H(R) +H(E). (10.284)

Thus the state of RE is a product state. We have found that if Bob is able to recover

perfectly from the action of the channel dilation UA→BE on the pure state ψRA, then,

in the resulting channel output pure state ϕRBE , the marginal state ρRE must be the

product ρR ⊗ ρE . Recall that we encountered this criterion for recoverability earlier,

when discussing quantum error-correcting codes in Chapter 7.

Conversely, suppose that ψRA is an entangled pure state, and Alice wishes to transfer

the purification of R to Bob by sending it through the noisy channel UA→BE . And

suppose that in the resulting tripartite pure state ϕRBE , the marginal state of RE

factorizes as ρRE = ρR⊗ρE . Then B decomposes into subsystems B = B1B2 such that

ϕRBE = WB

(
ψ̃RB1 ⊗ χB2E

)
. (10.285)

where WB is some unitary change of basis in B; this holds because the most general

purification of ρRE can be obtained from a particular purification by applying a unitary

transformation to B alone. Now Bob can construct an isometric decoder V B1→B̂W †
B,

which extracts the purification of R into Bob’s preferred subsystem B̂. Since all purifi-

cations of R differ by an isometry on Bob’s side, Bob can choose his decoding map to

output the state ψRB̂; then the input state of RA is successfully transmitted to RB̂ as

desired. Furthermore, we may choose the initial state to be a maximally entangled state

ΦRA of the reference system with the code space of a quantum code; if the marginal

state of RE factorizes in the resulting output pure state ϕRBE , then by the relative state

method of Chapter 3 we conclude that any state in the code space can be sent through

the channel and decoded with perfect fidelity by Bob.

We have found that purified quantum information transmitted through the noisy

channel is exactly correctable if and only if the reference system is completely uncor-

related with the channel’s environment, or as we sometimes say, decoupled from the
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environment. This is the decoupling principle, a powerful notion underlying many of the

key results in the theory of quantum channels.

So far we have shown that exact correctability corresponds to exact decoupling. But we

can likewise see that approximate correctability corresponds to approximate decoupling.

Suppose for example that the state of RE is close to a product state in the L1 norm:

∥ρRE − ρR ⊗ ρE∥1 ≤ ε. (10.286)

As we learned in Chapter 2, if two density operators are close together in this norm, that

means they also have fidelity close to one and hence purifications with a large overlap.

Any purification of the product state ρR ⊗ ρE has the form

ϕ̃RBE = WB

(
ψ̃RB1 ⊗ χB2E

)
, (10.287)

and since all purifications of ρRE can be transformed to one another by an isometry

acting on the purifying system B, there is a way to choose WB such that

F (ρRE ,ρR ⊗ ρE) =
∣∣∣⟨ϕRBE |ϕ̃RBE⟩∣∣∣2 ≥ 1− ∥ρRE − ρR ⊗ ρE∥1 ≥ 1− ε. (10.288)

Here we have used Uhlmann’s theorem, which asserts that the fidelity of two density

operators is equal to the maximum overlap of the purifications of the density operators.

Furthermore, because fidelity is monotonic, both under tracing out E and under the

action of Bob’s decoding map, and because Bob can decode ϕ̃RBE perfectly, we conclude

that

F
(
DB→B̂ (ρRB) , ψRB̂

)
≥ 1− ε (10.289)

if Bob chooses the proper decoding map D. Thus approximate decoupling in the L1 norm

implies high-fidelity correctability. It is convenient to note that a similar argument still

works if ρRE is close in the L1 norm to ρ̃R ⊗ ρ̃E , where ρ̃R is not necessarily trE (ρRE)

and ρ̃E is not necessarily trR (ρRE).

On the other hand, if (approximate) decoupling fails, the fidelity of Bob’s decoded

state will be seriously compromised. Suppose that in the state ϕRBE we have

I(R;E) = H(R) +H(E)−H(RE) ≥ ε > 0. (10.290)

Then the coherent information of ϕ is

Ic(R ⟩B)ϕ = H(B)ϕ −H(E)ϕ = H(RE)ϕ −H(E)ϕ ≤ H(R)ϕ − ε. (10.291)

By the quantum data processing inequality, we know that the coherent information of

Bob’s decoded state ψ̃RB̂ is no larger; hence

Ic(R ⟩B̂)ψ̃ = H(R)ψ̃ −H(RB̂)ψ̃ ≤ H(R)ψ̃ − ε, (10.292)

and therefore

H(RB̂)ψ̃ ≥ ε (10.293)

The deviation from perfect decoupling means that the decoded state of RB̂ has some

residual entanglement with the environment E, and is therefore impure.

Now we have the tools to derive an upper bound on the quantum channel capacity
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Q(N ). For n channel uses, let ψ(n) be a maximally entangled state of a reference system

H(n)
R ⊆ H⊗n

R with a code space H(n)
A ⊆ H⊗n

A , where dim H(n)
A = 2nR̄, so that

Ic(R
n⟩An)ψ(n) = H(Rn)ψ(n) = nR̄. (10.294)

(Here R̄ denotes the communication rate; we are now using R to denote the reference

system.) Now An is transmitted to Bn through
(
UA→BE

)⊗n
, yielding the pure state

ϕ(n) of RnBnEn. If Bob can decode with high fidelity, then his decoded state must have

coherent information H(Rn)ψ(n) − o(n), and the quantum data processing inequality

then implies that

Ic(R
n⟩Bn)ϕ(n) = H(Rn)ψ(n) − o(n) = nR̄− o(n) (10.295)

and hence

R̄ =
1

n
Ic(R

n⟩Bn)ϕ(n) + o(1). (10.296)

Taking the limit n → ∞ we see that the expression for Q(N ) in eq.(10.278) is an

upper bound on the quantum channel capacity. In Exercise 10.16, you will sharpen the

statement eq.(10.295), showing that

H(Rn)− Ic(R
n⟩Bn) ≤ 2H2(ε) + 4εnR̄ (10.297)

if there is a decoding map that achieves fidelity F ≥ 1− ε.

To show thatQ(N ) is an achievable rate, rather than just an upper bound, we will need

to formulate a quantum version of Shannon’s random coding argument. Our strategy

(see §10.9.3) will be to demonstrate the existence of codes that achieve approximate

decoupling of En from Rn.

10.7.3 Degradable channels

Though coherent information can be superadditive in some cases, there are classes of

channels for which the coherent information is additive, and therefore the quantum

channel capacity matches the one-shot capacity, for which there is a single-letter formula.

One such class is the class of degradable channels.

To understand what a degradable channel is, we first need the concept of a comple-

mentary channel. Any channel NA→B has a Stinespring dilation UA→BE , from which

we obtain NA→B by tracing out the environment E. Alternatively we obtain the channel

NA→E
c complementary to NA→B by tracing out B instead. Since we have the freedom

to compose UA→BE with an isometry V E→E without changing NA→B, the complemen-

tary channel is defined only up to an isometry acting on E. This lack of uniqueness

need not trouble us, because the properties of interest for the complementary channel

are invariant under such isometries.

We say that the channel NA→B is degradable if we can obtain its complementary

channel by composing NA→B with a channel mapping B to E:

NA→E
c = T B→E ◦ NA→B. (10.298)

In this sense, when Alice sends a state through the channel, Bob, who holds system B,

receives a less noisy copy than Eve, who holds system E.

Now suppose that UA1→B1E1
1 and UA2→B2E2

2 are dilations of the degradable channels

N1 and N2. Alice introduces a reference system R and prepares an input pure state
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ψRA1A2 , then sends the state to Bob via N1 ⊗ N2, preparing the output pure state

ϕRB1B2E1E2 . We would like to evaluate the coherent information Ic(R ⟩B1B2)ϕ in this

state.

The key point is that because both channels are degradable, there is a product channel

T1 ⊗ T2 mapping B1B2 to E1E2, and the monotonicity of mutual information therefore

implies

I(B1;B2) ≥ I(E1;E2). (10.299)

Therefore, the coherent information satisfies

Ic(R ⟩B1B2) = H(B1B2)−H(E1E2)

= H(B1) +H(B2)− I(B1;B2)−H(E1)−H(E2) + I(E1;E2)

≤ H(B1)−H(E1) +H(B2)−H(E2). (10.300)

These quantities are all evaluated in the state ϕRB1B2E1E2 . But notice that for the

evaluation ofH(B1)−H(E1), the isometryUA2→B2E2
2 is irrelevant. This quantity is really

the same as the coherent information Ic(RA2⟩B1), where now we regard A2 as part of the

reference system for the input to channel N1. Similarly H(B2)−H(E2) = Ic(RA1⟩B2),

and therefore,

Ic(R ⟩B1B2) ≤ Ic(RA2⟩B1) + Ic(RA1⟩B2) ≤ Q1(N1) +Q1(N2), (10.301)

where in the last inequality we use the definition of the one-shot capacity as coher-

ent information maximized over all inputs. Since Q1(N1 ⊗ N2) is likewise defined by

maximizing the coherent information Ic(R ⟩B1B2), we find that

Q1(N1 ⊗N2) ≤ Q1(N1) +Q1(N2) (10.302)

if N1 and N2 are degradable.

The regularized formula for the capacity of N is

Q(N ) = lim
n→∞

1

n
Q1(N⊗n) ≤ Q1(N ), (10.303)

where the last inequality follows from eq.(10.302) assuming that N is degradable. We’ll

see that Q1(N ) is actually an achievable rate, and therefore a single-letter formula for

the quantum capacity of a degradable channel.

As a concrete example of a degradable channel, consider the generalized dephasing

channel with dilation

UA→BE : |x⟩A 7→ |x⟩B ⊗ |αx⟩E , (10.304)

where {|x⟩A}, {|x⟩B} are orthonormal bases for HA, HB respectively, and the states

{|αx⟩E} of the environment are normalized but not necessarily orthogonal. (We discussed

the special case where A and B are qubits in §3.4.2.) The corresponding channel is

NA→B : ρ 7→
∑
x,x′

|x⟩⟨x|ρ|x′⟩⟨x′|⟨αx′ |αx⟩, (10.305)

which has the complementary channel

NA→E
c : ρ 7→

∑
x

|αx⟩⟨x|ρ|x⟩⟨αx|. (10.306)
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In the special case where the states {|αx⟩E = |x⟩E} are orthonormal, we obtain the

completely dephasing channel

∆A→B : ρ 7→
∑
x

|x⟩⟨x|ρ|x⟩⟨x|, (10.307)

whose complement ∆A→E has the same form as ∆A→B. (Here subscripts have been

suppressed to avoid cluttering the notation, but it should be clear from the context

whether |x⟩ denotes |x⟩A, |x⟩B, or |x⟩E in the expressions for NA→B, NA→E
c , ∆A→B,

and ∆A→E .) We can easily check that

NA→E
c = NC→E

c ◦∆B→C ◦ NA→B; (10.308)

therefore Nc ◦∆ degrades N to Nc. Thus N is degradable and Q(N ) = Q1(N ).

Further examples of degradable channels are discussed in Exercise 10.18.

We may also say that a channel NA→B is antidegradable if we can obtain that channel

from its complementary channel by composing NA→E
c with a channel mapping E to B:

NA→B = T E→B ◦ NA→E
c . (10.309)

In this sense, Bob receives a noisier output than Eve. It is easy to see that the quantum

capacity of an antidegradable channel must vanish. Eve can simulate Bob’s output by

applying T E→B to her output. Therefore, if a quantum state is transmitted through

many uses of the channel NA→B from Alice to Bob, and Bob can decode the state

with high fidelity, than Eve can decode it as well. Hence a nonzero capacity for an

antidegradable channel is disallowed by the no-cloning theorem.

10.7.4 Capacity of the depolarizing channel

As we discussed in Chapter 3, the depolarizing channel with error probability p acts on

the input density operator ρ of a single qubit according to

NA→B
p (ρ) = (1− p)ρ+

p

3
(XρX + Y ρY +ZρZ) , (10.310)

where {X,Y ,Z} denote the Pauli matrices. Let’s compute the one-shot capacity of this

channel.

Because of the channel’s symmetry, we can easily guess that the coherent infor-

mation will be optimized by an input density operator that is maximally mixed.

Therefore we consider the action of the channel on the maximally entangled state

|ϕ+⟩RA = 1√
2
((|00⟩+ |11⟩), where A is the channel input and R is the reference sys-

tem, obtaining the output

ρRB = (1− p)|ϕ+⟩⟨ϕ+|+ p

3

(
|ψ+⟩⟨ψ+|+ |ψ−|⟨ψ−|+ |ϕ−⟩⟨ϕ−|

)
. (10.311)

The one-shot capacity is the coherent information

Q1(Np) = Ic(R ⟩B) = H(B)−H(RB) (10.312)

if this quantity is nonnegative, and zero otherwise.

Because ρRB is a mixture of Bell states, the marginal density operator ρB is maximally

mixed and hence H(B) = 1. Since the eigenvalues of ρRB are
(
1− p, p3 ,

p
3 ,

p
3

)
, we have

H(RB) = −(1− p) log2(1− p)− p log2

(p
3

)
= H2(p) + p log2 3

=⇒ Ic(R ⟩B) = 1−H2(p)− p log2 3, (10.313)
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which is positive for p < p1 ≈ .18929. Thus the one-shot capacity Q1(Np) is nonzero for

error probability p < p1.

This expression for Q1(Np) has a simple interpretation — it is the communication

rate achieved by random stabilizer codes such that the probability of a decoding error

vanishes asymptotically. To see why, suppose that the number n of channel uses is

very large, so that the number of transmitted qubits with errors is close to pn with

high probability. Approximating the number of ways to choose which qubits have errors

by
(
n
np

)
, and noticing that for each damaged qubit there are three possible uniformly

distributed Pauli errors, we conclude that the number of typical errors is

≈
(
n

np

)
3pn ≈ 2n(H2(p)+p log2 3). (10.314)

Now consider n-qubit stabilizer codes with k logical qubits, and imagine averaging

uniformly over such codes. These codes have n − k independent commuting stabilizer

generators, and measuring all these generators yields an error syndrome with n−k bits.

If the number of possible syndromes 2n−k is much larger than the number of typical

errors, then the observed syndrome is very unlikely to point to any particular typical

error merely by accident; instead with high probability the syndrome will point to a

unique typical error, the one that actually occurred, which can therefore be decoded

correctly.

Concretely, the probability of a decoding error due to a syndrome decoding ambiguity

can be estimated as

error prob ≈ # typical errors

# syndromes
≈ 2n(H2(p)+p log2 3)

2n−k
= 2−n(Q1(Np)−R̄), (10.315)

where R̄ = k/n is the encoding rate. We conclude that the error probability approaches

zero as n→ ∞ for any rate R̄ less than Q1(Np).

We used a similar counting argument to obtain a lower bound on the classical capacity

C(p) = 1−H2(p) of the binary symmetric channel in §10.1.5. In that case we could find

a matching upper bound by noting that if the communication rate were larger than

C(p) then there would not enough distinct syndromes to distinguish among all the

typical errors. Curiously, this argument fails to provide a upper bound on the quantum

communication rate achieved by stabilizer codes for a very noisy depolarizing channel

Np where p is close to p1.

Counting syndromes does not yield an upper bound on the quantum capacity because

quantum codes can be highly degenerate; that is, there may be many nontrivial errors

that act trivially on the code space. We encountered an instructive example of a de-

generate stabilizer code in Chapter 7: the toric code, in which Z errors forming closed

loops on the two-dimensional qubit lattice (or X errors forming closed loops on the dual

lattice) are contained in the code stabilizer. A more mundane example is the quantum

repetition code spaced by codewords |0⟩⊗n and |1⟩⊗n. In this case ZiZj is in the code

stabilizer, where i and j label any pair among the n qubits.

It turns out that a positive capacity can be attained for p slightly above p1 by concate-

nating the length-m quantum repetition code with a random stabilizer code for some

values of m > 1. Correspondingly, one finds that, for some values of the number m of

channels uses and of the error probability p, the coherent information per channel use

is higher than Q1(Np).
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Consider the input to m channels uses

|Φ⟩RA1A2···Am =
1√
2

(
|0⟩⊗(m+1) + |1⟩⊗(m+1)

)
RA1A2···Am

, (10.316)

where R is the reference system. After I⊗
(
NA→B
p

)m
acts on this state, we may compute

explicitly 1
mIc(R⟩B1B2 · · ·Bm). One finds that for m = 5 (which turns out to be the

optimal case) this quantity, and therefore also Q(Np), is positive up to p < p5, where

p5 ≈ .19036 is strictly larger than p1.

For small p, 1
mIc(R⟩B1B2 · · ·Bm) is close to 1

m , hence much smaller for m > 1 than for

m = 1. But if the channel is sufficiently noisy, the coherent information is superadditive,

and one finds a higher value for m > 1, indicating that the quantum capacity exceeds

Q1(Np).

The value of p∗, the largest value of p for which the capacity is nonzero, is of consider-

able interest, but it is still unknown. Exercise 10.13 shows that the depolarizing channel

is antidegradable (and therefore has vanishing capacity) for p ≥ .25; hence p∗ ≤ .25. On

the other hand, the best currently known lower bound is p∗ ≥ .19088. Perhaps some-

day a single-letter formula will be found for the quantum capacity of the depolarizing

channel, but for now the superadditivity of coherent information has hindered efforts to

obtain a precise estimate of the capacity in the extremely noisy regime. It’s humbling.

10.8 Quantum Protocols

Using the decoupling principle in an i.i.d. setting, we can prove achievable rates for

two fundamental quantum protocols. These are fondly known as the father and mother

protocols, so named because each spawns a brood of interesting corollaries. We will

formulate these protocols and discuss some of their “children” in this section, postponing

the proofs until §10.9.

10.8.1 Father: Entanglement-assisted quantum communication

The father protocol is a scheme for entanglement-assisted quantum communication.

Through many uses of a noisy quantum channel NA→B, this protocol sends quantum

information with high fidelity from Alice to Bob, while also consuming some previously

prepared quantum entanglement shared by Alice and Bob. The task performed by the

protocol is summarized by the father resource inequality〈
NA→B : ρA

〉
+

1

2
I(R;E)[qq] ≥ 1

2
I(R;B)[q → q], (10.317)

where the resources on the left-hand side can be used to achieve the result on the

right-hand side, in an asymptotic i.i.d. setting. That is, the quantum channel N may

be used n times to transmit n
2 I(R;B) − o(n) qubits with fidelity F ≥ 1 − o(1), while

consuming n
2 I(R;E) + o(n) ebits of entanglement shared between sender and receiver.

These entropic quantities are evaluated in a tripartite pure state ϕRBE , obtained by

applying the Stinespring dilation UA→BE of NA→B to the purification ψRA of the input

density operator ρA. Eq.(10.317) means that for any input density operator ρA, there

exists a coding procedure that achieves the quantum communication at the specified

rate by consuming entanglement at the specified rate.

To remember the father resource inequality, it helps to keep in mind that I(R;B)
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quantifies something good, the correlation with the reference system which survives

transmission through the channel, while I(R;E) quantifies something bad, the corre-

lation between the reference system R and the channel’s environment E, which causes

the transmitted information to decohere. The larger the good quantity I(R;B), the

higher the rate of quantum communication. The larger the bad quantity I(R;E), the

more entanglement we need to consume to overcome the noise in the channel. To re-

member the factor of 1
2 in front of I(R;B), consider the case of a noiseless quantum

channel, where ψRA is maximally entangled; in that case there is no environment,

ϕRB =
1√
d

d−1∑
x=0

|x⟩R ⊗ |x⟩B, (10.318)

and 1
2I(R;B) = H(R) = H(B) = log2 d is just the number of qubits in A. To remember

the factor of 1
2 in front of I(R;E), consider the case of a noiseless classical channel (what

we called the completely dephasing channel in §10.7.3), where the quantum information

completely decoheres in a preferred basis; in that case

ϕRBE =
1√
d

d−1∑
x=0

|x⟩R ⊗ |x⟩B ⊗ |x⟩E , (10.319)

and I(R;B) = I(R;E) = H(R) = H(B) = log2 d. Then the father inequality merely

expresses the power of quantum teleportation: we can transmit n
2 qubits by consuming

n
2 ebits and sending n bits through the noiseless classical channel.

Before proving the father resource inequality, we will first discuss a few of its inter-

esting consequences.

Entanglement-assisted classical communication.

Suppose Alice wants to send classical information to Bob, rather than quantum in-

formation. Then we can use superdense coding to turn the quantum communication

achieved by the father protocol into classical communication, at the cost of consuming

some additional entanglement. By invoking the superdense coding resource inequality

SD : [q → q] + [qq] ≥ 2[c→ c] (10.320)

n
2 I(R;B) times, and combining with the father resource inequality, we obtain I(R;B)

bits of classical communication per use of the channel while consuming a number of

ebits

1

2
I(R;E) +

1

2
I(R;B) = H(R) (10.321)

per channel use. Thus we obtain an achievable rate for entanglement-assisted classical

communication through the noisy quantum channel:〈
NA→B : ρA

〉
+H(R)[qq] ≥ I(R;B)[c→ c]. (10.322)

We may define the entanglement-assisted classical capacity CE(N ) as the supremum over

achievable rates of classical communication per channel use, assuming that an unlimited

amount of entanglement is available at no cost. Then the resource inequality eq.(10.322)

implies

CE(N ) ≥ max
A

I(R;B). (10.323)
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In this case there is a matching upper bound, so eq.(10.323) is really an equality, and

hence a single-letter formula for the entanglement-assisted classical capacity. Further-

more, eq.(10.322) tells us a rate of entanglement consumption which suffices to achieve

the capacity. If we disregard the cost of entanglement, the father protocol shows that a

rate can be achieved for entanglement-assisted quantum communication which is half the

entanglement-assisted classical capacity CE(N ) of the noisy channel N . That’s clearly

true, since by consuming entanglement we can use teleportation to convert n bits of

classical communication into n/2 qubits of quantum communication.

We also note that for the case whereN is a noisy classical channel, eq.(10.323) matches

Shannon’s classical capacity. In that case, eq.(10.322) asserts that Shannon’s classical

communication rate is achievable by consuming some entanglement, but it turns out

that no consumption of entanglement is actually necessary.

Quantum channel capacity.

It may be that Alice wants to send quantum information to Bob, but Alice and Bob are

not so fortunate as to have pre-existing entanglement at their disposal. They can still

make use of the father protocol, if we are willing to loan them some entanglement, which

they are later required to repay. In this case we say that the entanglement catalyzes the

quantum communication. Entanglement is needed to activate the process to begin with,

but at the conclusion of the process no net entanglement has been consumed.

In this catalytic setting, Alice and Bob borrow 1
2I(R;E) ebits of entanglement per

use of the channel to get started, execute the father protocol, and then sacrifice some of

the quantum communication they have generated to replace the borrowed entanglement

via the resource inequality

[q → q] ≥ [qq]. (10.324)

After repaying their debt, Alice and Bob retain a number of qubits of quantum commu-

nication per channel use

1

2
I(R;B)− 1

2
I(R;E) = H(B)−H(E) = Ic(R ⟩B), (10.325)

the channel’s coherent information from R to B. We therefore obtain the achievable rate

for quantum communication〈
NA→B : ρA

〉
≥ Ic(R ⟩B)[q → q], (10.326)

albeit in the catalyzed setting. It can actually be shown that this same rate is achievable

without invoking catalysis (see §10.9.4). As already discussed in §10.7.1, though, because
of the superadditivity of coherent information this resource inequality does not yield a

general single-letter formula for the quantum channel capacity Q(N ).

10.8.2 Mother: Quantum state transfer

In the mother protocol, Alice, Bob, and Eve initially share a tripartite pure state ϕABE ;

thus Alice and Bob together hold the purification of Eve’s system E. Alice wants to

send her share of this purification to Bob, using as few qubits of noiseless quantum

communication as possible. Therefore, Alice divides her system A into two subsystems

A1 and A2, where A1 is as small as possible and A2 is uncorrelated with E. She keeps

A2 and sends A1 to Bob. After receiving A1, Bob divides A1B into two subsystems B1
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and B2, where B1 purifies E and B2 purifies A2. Thus, at the conclusion of the protocol,

Bob holds the purification of E in B1, and in addition Alice and Bob share a bipartite

pure state in A2B2. The protocol is portrayed in the following diagram:

A

E

B

@
@
@ �

�
�ϕABE

=⇒

A1 A2

E

B

@
@

@ �
�

�
=⇒

A2

E

B2 B1

�
�
�

In the i.i.d. version of the mother protocol, the initial state is ϕ⊗nABE , and the task

achieved by the protocol is summarized by the mother resource inequality

⟨ϕABE⟩+
1

2
I(A;E)[q → q] ≥ 1

2
I(A;B)[qq] + ⟨ϕ′B1E⟩, (10.327)

where the resources on the left-hand side can be used to achieve the result on the right-

hand side, in an asymptotic i.i.d. setting, and the entropic quantities are evaluated in the

state ϕABE . That is, if A
(n)
1 denotes the state Alice sends and A

(n)
2 denotes the state she

keeps, then for any positive ε, the state of A
(n)
2 En is ε-close in the L1 norm to a product

state, where log
∣∣∣A(n)

1

∣∣∣ = n
2 I(A;E) + o(n), while A

(n)
2 B

(n)
2 contains n

2 I(A;B) − o(n)

shared ebits of entanglement. Eq.(10.327) means that for any input pure state ϕABE

there is a way to choose the subsystem A
(n)
2 of the specified dimension such that A

(n)
2

and En are nearly uncorrelated and the specified amount of entanglement is harvested

in A
(n)
2 B

(n)
2 .

The mother protocol is in a sense dual to the father protocol. While the father pro-

tocol consumes entanglement to achieve quantum communication, the mother protocol

consumes quantum communication and harvests entanglement. For the mother, I(A;B)

quantifies the correlation between Alice and Bob at the beginning of the protocol (some-

thing good), and I(A;E) quantifies the noise in the initial shared entanglement (some-

thing bad). The mother protocol can also be viewed as a quantum generalization of the

Slepian-Wolf distributed compression protocol discussed in §10.1.3. The mother proto-

col merges Alice’s and Bob’s shares of the purification of E by sending Alice’s share to

Bob, much as distributed source coding merges the classical correlations shared by Alice

and Bob by sending Alice’s classical information to Bob. For this reason the mother

protocol has been called the fully quantum Slepian-Wolf protocol; the modifier “fully”

will be clarified below, when we discuss state merging, a variant on quantum state trans-

fer in which classical communication is assumed to be freely available. For the mother

(or father) protocol, 1
2I(A;E) (or 1

2I(R;E)) quantifies the price we pay to execute the

protocol, while 1
2I(A;B) (or 1

2I(R;B)) quantifies the reward we receive.

We may also view the mother protocol as a generalization of the entanglement con-

centration protocol discussed in §10.4, extending that discussion in three ways:

1. The initial entangled state shared by Alice and Bob may be mixed rather than pure.

2. The communication from Alice to Bob is quantum rather than classical.

3. The amount of communication that suffices to execute the protocol is quantified by

the resource inequality.

Also note that if the state of AE is pure (uncorrelated with B), then the mother protocol

reduces to Schumacher compression. In that case 1
2I(A;E) = H(A), and the mother
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resource inequality states that the purification of En can be transferred to Bob with

high fidelity using nH(A) + o(n) qubits of quantum communication.

Before proving the mother resource inequality, we will first discuss a few of its inter-

esting consequences.

Hashing inequality.

Suppose Alice and Bob wish to distill entanglement from many copies of the state ϕABE ,

using only local operations and classical communication (LOCC). In the catalytic set-

ting, they can borrow some quantum communication, use the mother protocol to distill

some shared entanglement, and then use classical communication and their harvested

entanglement to repay their debt via quantum teleportation. Using the teleportation

resource inequality

TP : [qq] + 2[c→ c] ≥ [q → q] (10.328)

n
2 I(A;E) times, and combining with the mother resource inequality, we obtain

⟨ϕABE⟩+ I(A;E)[c→ c] ≥ Ic(A⟩B)[qq] + ⟨ϕ′B1E⟩, (10.329)

since the net amount of distilled entanglement is 1
2I(A;B) per copy of ϕ achieved by

the mother minus the 1
2I(A;E) per copy consumed by teleportation, and

1

2
I(A;B)− 1

2
I(A;E) = H(B)−H(E) = Ic(A⟩B). (10.330)

Eq.(10.329) is the hashing inequality, which quantifies an achievable rate for distilling

ebits of entanglement shared by Alice and Bob from many copies of a mixed state ρAB,

using one-way classical communication, assuming that Ic(A⟩B) = −H(A|B) is positive.

Furthermore, the hashing inequality tells us how much classical communication suffices

for this purpose.

In the case where the state ρAB is pure, Ic(A⟩B) = H(A) − H(AB) = H(A) and

there is no environment E; thus we recover our earlier conclusion about concentration

of pure-state bipartite entanglement — that H(A) Bell pairs can be extracted per copy,

with a negligible classical communication cost.

As another example, suppose that Alice prepares n copies of the two-qubit Bell pair

|ϕ+⟩, and then sends half of each pair to Bob via the depolarizing channel with error

probability p, so that after transmission each noisy Bell pair shared by Alice and Bob

has fidelity 1− p with |ϕ+⟩ as in eq.(10.311). Then the same computation as in §10.7.4
yields

Ic(A⟩B) = H(B)−H(AB) = 1−H2(p)− p log2 3,

I(A,E) = H(A)− Ic(A⟩B) = H2(p) + p log2 3. (10.331)

The interpretation is similar to our explanation of how to achieve the one-shot capacity

of this channel: Alice and Bob can use a random stabilizer code to achieve this distillation

rate. Alice measures the code’s n − k stabilizer generators on her n qubits, and sends

the measurement outcomes to Bob. Bob measures the same stabilizer generators on his

n qubits, and notes where his syndrome bits differ from Alice’s. Using this information,

Bob infers what Pauli operators to apply to his qubits so that the two syndromes now

agree; ensuring that Alice and Bob now hold k encoded Bell pairs. If the rate R̄ = k/n

is less than Ic(A⟩B), then for large n Alice and Bob recover k encoded copies of |ϕ+⟩
with high probability.
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State merging.

Suppose Alice and Bob share the purification of Eve’s state, and Alice wants to transfer

her share of the purification to Bob, where now unlimited classical communication from

Alice to Bob is available at no cost. In contrast to the mother protocol, Alice wants to

achieve the transfer with as little one-way quantum communication as possible, even if

she needs to send more bits in order to send fewer qubits.

In the catalytic setting, Alice and Bob can borrow some quantum communication,

perform the mother protocol, then use teleportation and the entanglement extracted by

the mother protocol to repay some of the borrowed quantum communication. Combining

teleportation of n2 I(A;B) qubits with the mother resource inequality, we obtain

⟨ϕABE⟩+H(A|B)[q → q] + I(A;B)[c→ c] ≥ ⟨ϕ′B1E⟩, (10.332)

using

1

2
I(A;E)− 1

2
I(A;B) = H(E)−H(B) = H(AB)−H(B) = H(A|B). (10.333)

Eq.(10.332) is the state-merging inequality, expressing how much quantum and classical

communication suffices to achieve the state transfer in an i.i.d. setting, assuming that

H(A|B) is nonnegative.

Like the mother protocol, this state merging protocol can be viewed as a (partially)

quantum version of the Slepian-Wolf protocol for merging classical correlations. In the

classical setting,H(X|Y ) quantifies Bob’s remaining ignorance about Alice’s information

X when Bob knows only Y ; correspondingly, Alice can reveal X to Bob by sending

H(X|Y ) bits per letter of X. Similarly, state merging provides an operational meaning

to the quantum conditional information H(A|B), as the number of qubits per copy of ϕ

that Alice sends to Bob to convey her share of the purification of E, assuming classical

communication is free. In this sense we may regard H(A|B) as a measure of Bob’s

remaining “ignorance” about the shared purification of E when he holds only B.

Classically,H(X|Y ) is nonnegative, and zero if and only if Bob is already certain about

XY , but quantumly H(A|B) can be negative. How can Bob have “negative uncertainty”

about the quantum state of AB? If H(A|B) < 0, or equivalently if I(A;E) < I(A;B),

then the mother protocol yields more quantum entanglement than the amount of quan-

tum communication it consumes. Therefore, when H(A|B) is negative (i.e. Ic(A⟩B) is

positive), the mother resource inequality implies the Hashing inequality, asserting that

classical communication from Alice to Bob not only achieves state transfer, but also

distills −H(A|B) ebits of entanglement per copy of ϕ. These distilled ebits can be de-

posited in the entanglement bank, to be withdrawn as needed in future rounds of state

merging, thus reducing the quantum communication cost of those future rounds. Bob’s

“negative uncertainty” today reduces the quantum communication cost of tasks to be

performed tomorrow.

10.8.3 Operational meaning of strong subadditivity

The observation that H(A|B) is the quantum communication cost of state merging

allows us to formulate a simple operational proof of the strong subadditivity of von

Neumann entropy, expressed in the form

H(A|BC) ≤ H(A|B), or −H(A|B) ≤ −H(A|BC). (10.334)
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When H(A|B) is positive, eq.(10.334) is the obvious statement that it is no harder to

merge Alice’s system with Bob’s if Bob holds C as well as B. When H(A|B) is negative,

eq.(10.334) is the obvious statement that Alice and Bob can distill no less entanglement

using one-way classical communication if Bob holds C as well as B.

To complete this argument, we need to know that H(A|B) is not only achievable

but also that it is the optimal quantum communication cost of state merging, and that

−H(A|B) ebits is the optimal yield of hashing. The optimality follows from the principle

that, for a bipartite pure state, k qubits of quantum communication cannot increase the

shared entanglement of AB by more than k ebits.

If H(A|B) is negative, consider cutting the system ABE into the two parts AE and

B, as in the following figure:
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In the hashing protocol, applied to n copies of ϕABE , the entanglement across this cut

at the beginning of the protocol is nH(B). By the end of the protocol En has decoupled

from A
(n)
2 and has entanglement nH(E) with B

(n)
1 , ignoring o(n) corrections. If k ebits

shared by Alice and Bob are distilled, the final entanglement across the AE-B cut is

nH(E) + k ≤ nH(B) =⇒ k

n
≤ H(B)−H(E) = −H(A|B). (10.335)

This inequality holds because LOCC cannot increase the entanglement across the cut,

and implies that no more than −H(A|B) ebits of entanglement per copy of ϕABE can

be distilled in the hashing protocol, asymptotically. (To be clear, this argument does

not exclude entanglement distillation via LOCC at a rate higher than −H(A|B); rather

it shows that a protocol achieving distillation at a higher rate could not succeed at

transferring the purification of E to B1.)

On the other hand, if H(A|B) is positive, at the conclusion of state merging B
(n)
1 is

entangled with En, and the entanglement across the AE-B cut is at least nH(E). To

achieve this increase in entanglement, the number of qubits sent from Alice to Bob must

be at least

k ≥ nH(E)− nH(B) =⇒ k

n
≥ H(E)−H(B) = H(A|B). (10.336)

This inequality holds because the entanglement across the cut cannot increase by more

than the quantum communication across the cut, and implies that at least H(A|B)

qubits must be sent per copy of ϕABE to achieve state merging.

To summarize, we have proven strong subadditivity, not by the traditional route of

sophisticated matrix analysis, but via a less direct method. This proof is built on two

cornerstones of quantum information theory — the decoupling principle and the theory

of typical subspaces — which are essential ingredients in the proof of the mother resource

inequality.
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10.8.4 Negative conditional entropy in thermodynamics

As a further application of the decoupling mother resource inequality, we now revisit

Landauer’s Principle, developing another perspective on the implications of negative

quantum conditional entropy. Recall that erasure of a bit is a process which maps the

bit to 0 irrespective of its initial value. This process is irreversible — knowing only the

final state 0 after erasure, we cannot determine whether the initial state before erasure

was 0 or 1. Irreversibility implies that erasure incurs an unavoidable thermodynamic

cost. According to Landauer’s Principle, erasing a bit at temperature T requires work

no less than W = kT ln 2.

A specific erasure procedure is analyzed in Exercise 10.21. Suppose a two-level quan-

tum system has energy eigenstates |0⟩, |1⟩ with corresponding eigenvalues E0 = 0 and

E1 = E ≥ 0. Initially the qubit is in an unknown mixture of these two states, and the

energy splitting is E = 0. We erase the bit in three steps. In the first step, we bring the

bit into contact with a heat bath at temperature T > 0, and wait for the bit to come

to thermal equilibrium with the bath. In this step the bit “forgets” its initial value, but

the bit is not yet erased because it has not been reset. In the second step, with the bit

still in contact with the bath, we turn on a control field which slowly increases E to

a value much larger than kT while maintaining thermal equilibrium all the while, thus

resetting the bit to |0⟩. In the third step, we isolate the bit from the bath and turn off the

control field, so the two states of the bit become degenerate again. As shown in Exercise

10.21, work W = kT ln 2 is required to execute step 2, with the energy dissipated as

heat flowing from bit to bath.

We can also run the last two steps backward, increasing E while the bit is isolated

from the bath, then decreasing E with the bit in contact with the bath. This procedure

maps the state |0⟩ to the maximally mixed state of the bit, extracting workW = kT ln 2

from the bath in the process.

Erasure is irreversible because the agent performing the erasure does not know the in-

formation being erased. (If a copy of the information were stored in her memory, survival

of that copy would mean that the erasure had not succeeded). From an information-

theoretic perspective, the reduction in the thermodynamic entropy of the erased bit,

and hence the work required to perform the erasure, arises because erasure reduces the

agent’s ignorance about the state of the bit, ignorance which is quantified by the Shan-

non entropy. But to be more precise, it is the conditional entropy of the system, given

the state of the agent’s memory, which captures the agent’s ignorance before erasure

and therefore also the thermodynamic cost of erasing. Thus the minimal work needed

to erase system A should be expressed as

W (A|O) = H(A|O)kT ln 2, (10.337)

where O is the memory of the observer who performs the erasure, and H(A|O) quantifies

that observer’s ignorance about the state of A.

But what if A and O are quantum systems? We know that if A and O are entangled,

then the conditional entropy H(A|O) can be negative. Does that mean we can erase A

while extracting work rather than doing work?

Yes, we can! Suppose for example that A and O are qubits and their initial state is

maximally entangled. By controlling the contact between AO and the heat bath, the

observer can extract work W = 2kT log 2 while transforming AO to a maximally mixed

state, using the same work extraction protocol as described above. Then she can do work
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W = kT log 2 to return A to the state |0⟩. The net effect is to erase A while extracting

work W = kT log 2, satisfying the equality eq.(10.337).

To appreciate why this trick works, we should consider the joint state of AO rather

than the state of A alone. Although the marginal state of A is mixed at the beginning

of the protocol and pure at the end, the state of AO is pure at the beginning and mixed

at the end. Positive work is extracted by sacrificing the purity of AO.

To generalize this idea, let’s consider n≫ 1 copies of the state ρAO of system A and

memory O. Our goal is to map the n copies of A to the erased state |000 . . . 0⟩ while

using or extracting the optimal amount of work. In fact, the optimal work per copy is

given by eq.(10.337) in the n→ ∞ limit.

To achieve this asymptotic work per copy, the observer first projects An onto its

typical subspace, succeeding with probability 1 − o(1). A unitary transformation then

rotates the typical subspace to a subsystem Ā containing n(H(A) + o(1)) qubits, while

“erasing” the complementary qubits as in eq.(10.149). Now it only remains to erase Ā.

The mother resource inequality ensures that we may decompose Ā into subsystems

A1A2 such that A2 contains
n
2 (I(A;O)− o(1)) qubits and is nearly maximally entangled

with a subsystem of On. What is important for the erasure protocol is that we may

identify a subsystem of ĀOn containing n (I(A;O)− o(1)) qubits which is only distance

o(1) away from a pure state. By controlling the contact between this subsystem and the

heat bath, we may extract work W = n(I(A;O)− o(1))kT log 2 while transforming the

subsystem to a maximally mixed state. We then proceed to erase Ā, expending work

kT log |Ā| = n(H(A)+ o(1))kT log 2. The net work cost of the erasure, per copy of ρAO,

is therefore

W = (H(A)− I(A;O) + o(1)) kT log 2 = (H(A|O) + o(1)) kT log 2, (10.338)

and the erasure succeeds with probability 1− o(1). A notable feature of the protocol is

that only the subsystem of On which is entangled with A2 is affected. Any correlation

of the memory O with other systems remains intact, and can be exploited in the future

to reduce the cost of erasure of those other systems.

As does the state merging protocol, this erasure protocol provides an operational

interpretation of strong subadditivity. For positiveH(A|O),H(A|O) ≥ H(A|OO′) means

that it is no harder to erase A if the observer has access to both O and O′ than if she

has access to O alone. For negative H(A|O), −H(A|OO′) ≥ −H(A|O) means that we

can extract at least as much work from AOO′ as from its subsystem AO.

To carry out this protocol and extract the optimal amount of work while erasing A,

we need to know which subsystem of On provides the purification of A2. The decou-

pling argument ensures that this subsystem exists, but does not provide a constructive

method for finding it, and therefore no concrete protocol for erasing at optimal cost.

This quandary is characteristic of Shannon theory; for example, Shannon’s noisy channel

coding theorem ensures the existence of a code that achieves the channel capacity, but

does not provide any explicit code construction.

10.9 The Decoupling Inequality

Achievable rates for quantum protocols are derived by using random codes, much as in

classical Shannon theory. But this similarity between classical and quantum Shannon

theory is superficial — at a deeper conceptual level, quantum protocols differ substan-

tially from classical ones. Indeed, the decoupling principle underlies many of the key
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findings of quantum Shannon theory, providing a unifying theme that ties together

many different results. In particular, the mother and father resource inequalities, and

hence all their descendants enumerated above, follow from an inequality that specifies

a sufficient condition for decoupling.

This decoupling inequality addresses the following question: Suppose that Alice and

Eve share a quantum state σAE , where A is an n-qubit system. This state may be

mixed, but in general A and E are correlated; that is, I(A;E) > 0. Now Alice starts

discarding qubits one at a time, where each qubit is a randomly selected two-dimensional

subsystem of what Alice holds. Each time Alice discards a qubit, her correlation with

E grows weaker. How many qubits should she discard so that the subsystem she retains

has a negligible correlation with Eve’s system E?

To make the question precise, we need to formalize what it means to discard a random

qubit. More generally, suppose that A has dimension |A|, and Alice decomposes A into

subsystems A1 and A2, then discards A1 and retains A2. We would like to consider many

possible ways of choosing the discarded system with specified dimension |A1|. Equiv-
alently, we may consider a fixed decomposition A = A1A2, where we apply a unitary

transformation U to A before discarding A1. Then discarding a random subsystem with

dimension |A1| is the same thing as applying a random unitary U before discarding the

fixed subsystem A1:

σAE
@

@ E

A

�
�

U
A1

A2

To analyze the consequences of discarding a random subsystem, then, we will need

to be able to compute the expectation value of a function f(U) when we average U

uniformly over the group of unitary |A|×|A| matrices. We denote this expectation value

as EU [f(U)]; to perform computations we will only need to know that EU is suitably

normalized, and is invariant under left or right multiplication by any constant unitary

matrix V :

EU [1] = 1, EU [f(U)] = EU [f(V U)] = EU [f(UV )] . (10.339)

These conditions uniquely define EU [f(U)], which is sometimes described as the integral

over the unitary group using the invariant measure or Haar measure on the group.

If we apply the unitary transformation U to A, and then discard A1, the marginal

state of A2E is

σA2E(U) := trA1

(
(UA ⊗ IE)σAE

(
U †
A ⊗ IE

))
. (10.340)

The decoupling inequality expresses how close (in the L1 norm) σA2E is to a product

state when we average over U :(
EU

[
∥σA2E(U)− σmax

A2
⊗ σE∥1

])2 ≤ |A2| · |E|
|A1|

tr
(
σ2
AE

)
, (10.341)

where

σmax
A2

:=
1

|A2|
I (10.342)

denotes the maximally mixed state on A2, and σE is the marginal state trAσAE .
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This inequality has interesting consequences even in the case where there is no system

E at all and σA is pure, where it becomes

EU

[
∥σA2(U)− σmax

A2
∥1
]
≤

√
|A2|
|A1|

tr
(
σ2
A

)
=

√
|A2|
|A1|

. (10.343)

Eq.(10.343) implies that, for a randomly chosen pure state of the bipartite system

A = A1A2, where |A2|/|A1| ≪ 1, the density operator on A2 is very nearly maxi-

mally mixed with high probability. One can likewise show that the expectation value

of the entanglement entropy of A1A2 is very close to the maximal value: E [H(A2)] ≥
log2 |A2| − |A2|/ (2|A1| ln 2). Thus, if for example A2 is 50 qubits and A1 is 100 qubits,

the typical entropy deviates from maximal by only about 2−50 ≈ 10−15.

10.9.1 Proof of the decoupling inequality

To prove the decoupling inequality, we will first bound the distance between σA2E and

a product state in the L2 norm, and then use the Cauchy-Schwarz inequality to obtain

a bound on the L1 distance. Eq.(10.341) follows from

EU

[
∥σA2E(U)− σmax

A2
⊗ σE∥22

]
≤ 1

|A1|
tr
(
σ2
AE

)
, (10.344)

combined with

(E [f(U)])2 ≤ E
[
f(U)2

]
and ∥M∥21 ≤ d∥M∥22 (10.345)

(for nonnegative f), which implies

(E [∥ · ∥1])2 ≤ E
[
∥ · ∥21

]
≤ |A2| · |E| · E

[
∥ · ∥22

]
. (10.346)

We also note that

∥σA2E − σmax
A2

⊗ σE∥22 = tr
(
σA2E − σmax

A2
⊗ σE

)2
= tr

(
σ2
A2E

)
− 1

|A2|
tr
(
σ2
E

)
, (10.347)

because

tr
(
σmax
A2

)2
=

1

|A2|
; (10.348)

therefore, to prove eq.(10.344) it suffices to show

EU

[
tr
(
σ2
A2E(U)

)]
≤ 1

|A2|
tr
(
σ2
E

)
+

1

|A1|
tr
(
σ2
AE

)
. (10.349)

We can facilitate the computation of EU

[
tr
(
σ2
A2E

(U)
)]

using a clever trick. For any

bipartite system BC, imagine introducing a second copy B′C ′ of the system. Then

(Exercise 10.22)

trC
(
σ2
C

)
= trBCB′C′ (IBB′ ⊗ SCC′) (σBC ⊗ σB′C′) , (10.350)

where SCC′ denotes the swap operator, which acts as

SCC′ : |i⟩C ⊗ |j⟩C′ 7→ |j⟩C ⊗ |i⟩C′ . (10.351)
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In particular, then,

trA2E

(
σ2
A2E(U)

)
= trAEA′E′

(
IA1A′

1
⊗ SA2A′

2
⊗ SEE′

)
(σAE(U)⊗ σA′E′(U))

= trAEA′E′ (MAA′(U)⊗ SEE′) (σAE ⊗ σA′E′) , (10.352)

where

MAA′(U) =
(
U †
A ⊗U †

A′

)(
IA1A′

1
⊗ SA2A′

2

)
(UA ⊗UA′) . (10.353)

The expectation value of MAA′(U) is evaluated in Exercise 10.22; there we find

EU [MAA′(U)] = cIIAA′ + cSSAA′ (10.354)

where

cI =
1

|A2|

(
1− 1/|A1|2

1− 1/|A|2

)
≤ 1

|A2|
,

cS =
1

|A1|

(
1− 1/|A2|2

1− 1/|A|2

)
≤ 1

|A1|
. (10.355)

Plugging into eq.(10.352), we then obtain

EU

[
trA2E

(
σ2
A2E(U)

)]
≤ trAEA′E′

((
1

|A2|
IAA′ +

1

|A1|
SAA′

)
⊗ SEE′

)
(σAE ⊗ σA′E′)

=
1

|A2|
tr
(
σ2
E

)
+

1

|A1|
(
σ2
AE

)
, (10.356)

thus proving eq.(10.349) as desired.

10.9.2 Proof of the mother inequality

The mother inequality eq.(10.327) follows from the decoupling inequality eq.(10.341) in

an i.i.d. setting. Suppose Alice, Bob, and Eve share the pure state ϕ⊗nABE . Then there

are jointly typical subspaces of An, Bn, and En, which we denote by Ā, B̄, Ē, such that∣∣Ā∣∣ = 2nH(A)+o(n),
∣∣B̄∣∣ = 2nH(B)+o(n),

∣∣Ē∣∣ = 2nH(E)+o(n). (10.357)

Furthermore, the normalized pure state ϕ′
ĀB̄Ē

obtained by projecting ϕ⊗nABE onto Ā ⊗
B̄ ⊗ Ē deviates from ϕ⊗nABE by distance o(1) in the L1 norm.

In order to transfer the purification of En to Bob, Alice first projects An onto its

typical subspace, succeeding with probability 1 − o(1), and compresses the result. She

then divides her compressed system Ā into two parts Ā1Ā2, and applies a random unitary

to Ā before sending Ā1 to Bob. Quantum state transfer is achieved if Ā2 decouples from

Ē.

Because ϕ′
ĀB̄Ē

is close to ϕ⊗nABE , we can analyze whether the protocol is successful

by supposing the initial state is ϕ′
ĀB̄Ē

rather than ϕ⊗nABE . According to the decoupling
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inequality(
EU

[
∥σĀ2Ē(U)− σmax

Ā2
⊗ σĒ∥1

])2
≤ |Ā| · |Ē|

|Ā1|2
tr
(
σ2
ĀĒ

)
=

1

|Ā1|2
2n(H(A)+H(E)+o(1)) tr

(
σ2
ĀĒ

)
=

1

|Ā1|2
2n(H(A)+H(E)−H(B)+o(1)); (10.358)

here we have used properties of typical subspaces in the second line, as well as the

property that σĀĒ and σB̄ have the same nonzero eigenvalues, because ϕ′
ĀB̄Ē

is pure.

Eq.(10.358) bounds the L1 distance of σĀ2Ē(U) from a product state when averaged

over all unitaries, and therefore suffices to ensure the existence of at least one unitary

transformation U such that the L1 distance is bounded above by the right-hand side.

Therefore, by choosing this U , Alice can decouple Ā2 from En to o(1) accuracy in the

L1 norm by sending to Bob

log2 |Ā1| =
n

2
(H(A) +H(E)−H(B) + o(1)) =

n

2
(I(A;E) + o(1)) (10.359)

qubits, suitably chosen from the (compressed) typical subspace of An. Alice retains

|Ā2| = nH(A) − n
2 I(A;E) − o(n) qubits of her compressed system, which are nearly

maximally mixed and uncorrelated with En; hence at the end of the protocol she shares

with Bob this many qubit pairs, which have high fidelity with a maximally entangled

state. Since ϕABE is pure, and thereforeH(A) = 1
2 (I(A;E) + I(A;B)), we conclude that

Alice and Bob distill n
2 I(A;B) − o(n) ebits of entanglement, thus proving the mother

resource inequality.

We can check that this conclusion is plausible using a crude counting argument.

Disregarding the o(n) corrections in the exponent, the state ϕ⊗nABE is nearly maximally

mixed on a typical subspace of AnEn with dimension 2nH(AE), i.e. the marginal state

on ĀĒ can be realized as a nearly uniform ensemble of this many mutually orthogonal

states. If Ā1 is randomly chosen and sufficiently small, we expect that, for each state in

this ensemble, Ā1 is nearly maximally entangled with a subsystem of the much larger

system Ā2Ē, and that the marginal states on Ā2Ē arising from different states in the ĀĒ

ensemble have a small overlap. Therefore, we anticipate that tracing out Ā1 yields a state

on Ā2Ē which is nearly maximally mixed on a subspace with dimension |Ā1|2nH(AE).

Approximate decoupling occurs when this state attains full rank on Ā2Ē, since in that

case it is close to maximally mixed on Ā2Ē and therefore close to a product state on its

support. The state transfer succeeds, therefore, provided

|Ā1|2nH(AE) ≈ |Ā2| · |Ē| = |Ā| · |Ē|
|Ā1|

≈ 2n(H(A)+H(E))

|Ā1|
=⇒ |Ā1|2 ≈ 2nI(A;E), (10.360)

as in eq.(10.359).

Our derivation of the mother resource inequality, based on random coding, does not

exhibit any concrete protocol that achieves the claimed rate, nor does it guarantee the

existence of any protocol in which the required quantum processing can be executed ef-

ficiently. Concerning the latter point, it is notable that our derivation of the decoupling

inequality applies not just to the expectation value averaged uniformly over the unitary

group, but also to any average over unitary transformations which satisfies eq.(10.354).

In fact, this identity is satisfied by a uniform average over the Clifford group, which
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means that there is some Clifford transformation on Ā which achieves the rates speci-

fied in the mother resource inequality. Any Clifford transformation on n qubits can be

reached by a circuit with O(n2) gates. Since it is also known that Schumacher com-

pression can be achieved by a polynomial-time quantum computation, Alice’s encoding

operation can be carried out efficiently.

In fact, after compressing, Alice encodes the quantum information she sends to Bob

using a stabilizer code (with Clifford encoder U), and Bob’s task, after receiving Ā1 is

to correct the erasure of Ā2. Bob can replace each erased qubit by the standard state |0⟩,
and then measure the code’s check operators. With high probability, there is a unique

Pauli operator acting on the erased qubits that restores Bob’s state to the code space,

and the recovery operation can be efficiently computed using linear algebra. Hence, Bob’s

part of the mother protocol, like Alice’s, can be executed efficiently. (Projections onto

typical subspaces are used in the proof of the mother inequality, but not in the protocol

itself, so we don’t need to worry about whether these projections can be performed

efficiently.)

10.9.3 Proof of the father inequality

One-shot version.

In the one-shot version of the father protocol, Alice and Bob share a pair of maximally

entangled systems A1B1, and in addition Alice holds input state ρA2
of system A2 which

she wants to convey to Bob. Alice encodes ρA2
by applying a unitary transformation V

to A = A1A2, then sends A to Bob via the noisy quantum channel NA→B2 . Bob applies

a decoding map DB1B2→Ã2 jointly to the channel output and his half of the entangled

state he shares with Alice, hoping to recover Alice’s input state with high fidelity:
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We would like to know how much shared entanglement suffices for Alice and Bob to

succeed.

This question can be answered using the decoupling inequality. First we introduce

a reference system R′ which is maximally entangled with A2; then Bob succeeds if his

decoder can extract the purification of R′. Because the system R′B1 is maximally entan-

gled with A1A2, the encoding unitary V acting on A1A2 can be replaced by its transpose

V T acting on R′B1. We may also replace N by its Stinespring dilation UA1A2→B2E , so

that the extended output state ϕ of R′B1B2E is pure:
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Finally we invoke the decoupling principle — if R′ and E decouple, then R′ is purified by

a subsystem of B1B2, which means that Bob can recover ρA2
with a suitable decoding

map.

If we consider V , and hence also V T , to be a random unitary, then we may describe

the situation this way: We have a tripartite pure state ϕRB2E , where R = R′B1, and we

would like to know whether the marginal state of R′E is close to a product state when

the random subsystem B1 is discarded from R. This is exactly the question addressed

by the decoupling inequality, which in this case may be expressed as

(
EV

[
∥σR′E(V )− σmax

R′ ⊗ σE∥1
])2 ≤ |R| · |E|

|B1|2
tr
(
σ2
RE

)
, (10.361)

Eq.(10.361) asserts that the L1 distance from a product state is bounded above when

averaged uniformly over all unitary V ’s; therefore there must be some particular encod-

ing unitary V that satisfies the same bound. We conclude that near-perfect decoupling

of R′E, and therefore high-fidelity decoding of B2, is achievable provided that

|A1| = |B1| ≫ |R′| · |E| tr
(
σ2
RE

)
= |A2| · |E| tr

(
σ2
B2

)
, (10.362)

where to obtain the second equality we use the purity of ϕRB2E and recall that the refer-

ence system R′ is maximally entangled with A2, and therefore has the same dimension.

i.i.d. version.

In the i.i.d. version of the father protocol, Alice and Bob achieve high fidelity

entanglement-assisted quantum communication through n uses of the quantum chan-

nel NA→B. The code they use for this purpose can be described in the following way:

Consider an input density operator ρA of system A, which is purified by a reference

system R. Sending the purified input state ψRA through UA→BE , the isometric dilation

of NA→B, generates the tripartite pure state ϕRBE . Evidently applying
(
UA→BE

)⊗n
to

ψ⊗n
RA produces ϕ⊗nRBE .

But now suppose that before transmitting the state to Bob, Alice projects An onto

its typical subspace Ā, succeeding with probability 1− o(1) in preparing a state of ĀR̄

that is nearly maximally entangled, where R̄ is the typical subspace of Rn. Imagine

dividing R̄ into a randomly chosen subsystem B1 and its complementary subsystem R′;

then there is a corresponding decomposition of Ā = A1A2 such that A1 is very nearly

maximally entangled with B1 and A2 is very nearly maximally entangled with R′.

If we interpret B1 as Bob’s half of an entangled state of A1B1 shared with Alice,

this becomes the setting where the one-shot father protocol applies, if we ignore the

small deviation from maximal entanglement in A1B1 and R′A2. As for our analysis of

the i.i.d. mother protocol, we apply the one-shot father inequality not to ϕ⊗nRBE , but

rather to the nearby state ϕ′
R̄B̄Ē

, where B̄ and Ē are the typical subspaces of Bn and

En respectively. Applying eq.(10.361), and using properties of typical subspaces, we can

bound the square of the L1 deviation of R′Ē from a product state, averaged over the

choice of B1, by

|R̄| · |Ē|
|B1|2

tr
(
σ2
B̄

)
=

2n(H(R)+H(E)−H(B)+o(1))

|B1|2
=

2n(I(R;E)+o(1))

|B1|2
; (10.363)

hence the bound also applies for some particular way of choosing B1. This choice defines
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the code used by Alice and Bob in a protocol which consumes

log2 |B1| =
n

2
I(R;E) + o(n) (10.364)

ebits of entanglement, and conveys from Alice to Bob

nH(R)− n

2
I(R;E)− o(n) =

n

2
I(R;B)− o(n) (10.365)

high-fidelity qubits. This proves the father resource inequality.

10.9.4 Quantum channel capacity revisited

In §10.8.1 we showed that the coherent information is an achievable rate for quantum

communication over a noisy quantum channel. That derivation, a corollary of the father

resource inequality, applied to a catalytic setting, in which shared entanglement between

sender and receiver can be borrowed and later repaid. It is useful to see that the same

rate is achievable without catalysis, a result we can derive from an alternative version

of the decoupling inequality.

This version applies to the setting depicted here:
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A density operator ρA for system A, with purification ψRA, is transmitted through a

channel NA→B which has the isometric dilation UA→BE . The reference system R has

a decomposition into subsystems R1R2. We apply a random unitary transformation V

to R, then project R1 onto a fixed vector |0⟩R1 , and renormalize the resulting state. In

effect, then we are projecting R onto a subspace with dimension |R2|, which purifies

a corresponding code subspace of A. This procedure prepares a normalized pure state

ϕR2BE , and a corresponding normalized marginal state σR2E of R2E.

If R2 decouples from E, then R2 is purified by a subsystem of B, which means that the

code subspace of A can be recovered by a decoder applied to B. A sufficient condition

for approximate decoupling can be derived from the inequality(
EV

[
∥σR2E(V )− σmax

R2
⊗ σE∥1

])2 ≤ |R2| · |E| tr
(
σ2
RE

)
. (10.366)

Eq.(10.366) resembles eq.(10.341) and can be derived by a similar method. Note that the

right-hand side of eq.(10.366) is enhanced by a factor of |R1| relative to the right-hand

side of eq.(10.341). This factor arises because after projecting R1 onto the fixed state

|0⟩ we need to renormalize the state by multiplying by |R1|, while on the other hand the

projection suppresses the expected distance squared from a product state by a factor

|R1|.
In the i.i.d. setting where the noisy channel is used n times, we consider ϕ⊗nRBE , and

project onto the jointly typical subspaces R̄, B̄, Ē of Rn, Bn, En respectively, succeeding

with high probability. We choose a code by projecting R̄ onto a random subspace with

dimension |R2|. Then, the right-hand side of eq.(10.366) becomes

|R2| · 2n(H(E)−H(B)+o(1)), (10.367)

and since the inequality holds when we average uniformly over V , it surely holds for
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some particular V . That unitary defines a code which achieves decoupling and has the

rate

1

n
log2 |R2| = H(E)−H(B)− o(1) = Ic(R ⟩B)− o(1). (10.368)

Hence the coherent information is an achievable rate for high-fidelity quantum commu-

nication over the noisy channel.

10.9.5 Black holes as mirrors

As our final application of the decoupling inequality, we consider a highly idealized

model of black hole dynamics. Suppose that Alice holds a k-qubit system A which she

wants to conceal from Bob. To be safe, she discards her qubits by tossing them into a

large black hole, where she knows Bob will not dare to follow. The black hole B is an

(n−k)-qubit system, which grows to n qubits after merging with A, where n is much

larger than k.

Black holes are not really completely black — they emit Hawking radiation. But qubits

leak out of an evaporating black hole very slowly, at a rate per unit time which scales

like n−1/2. Correspondingly, it takes time Θ(n3/2) for the black hole to radiate away a

significant fraction of its qubits. Because the black hole Hilbert space is so enormous,

this is a very long time, about 1067 years for a solar mass black hole, for which n ≈ 1078.

Though Alice’s qubits might not remain secret forever, she is content knowing that they

will be safe from Bob for 1067 years.

But in her haste, Alice fails to notice that her black hole is very, very old. It has been

evaporating for so long that it has already radiated away more than half of its qubits.

Let’s assume that the joint state of the black hole and its emitted radiation is pure, and

furthermore that the radiation is a Haar-random subsystem of the full system.

Because the black hole B is so old, |B| is much smaller than the dimension of the

radiation subsystem; therefore, as in eq.(10.343), we expect the state of B to be very

nearly maximally mixed with high probability. We denote by RB the subsystem of the

emitted radiation which purifies B; thus the state of BRB is very nearly maximally

entangled. We assume that RB has been collected by Bob and is under his control.

To keep track of what happens to Alice’s k qubits, we suppose that her k-qubit system

A is maximally entangled with a reference system RA. After A enters the black hole,

Bob waits for a while, until the k′-qubit system A′ is emitted in the black hole’s Hawking

radiation. After retrieving A′, Bob hopes to recover the purification of RA by applying

a suitable decoding map to A′RB. Can he succeed?

We’ve learned that Bob can succeed with high fidelity if the remaining black hole

system B′ decouples from Alice’s reference system RA. Let’s suppose that the qubits

emitted in the Hawking radiation are chosen randomly; that is, A′ is a Haar-random

k′-qubit subsystem of the n-qubit system AB, as depicted here:
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The double lines indicate the very large systems B and B′, and single lines the smaller

systems A and A′. Because the radiated qubits are random, we can determine whether

RAB
′ decouples using the decoupling inequality, which for this case becomes

EU

[
∥σB′RA

(U)− σmax
B′ ⊗ σRA

∥1
]
≤

√
|ABRA|
|A′|2

tr
(
σ2
ABRA

)
. (10.369)

Because the state of ARA is pure, and B is maximally entangled with RB, we have

tr
(
σ2
ABRA

)
= 1/|B|, and therefore the Haar-averaged L1 distance of σB′RA

from a

product state is bounded above by√
|ARA|
|A′|2

=
|A|
|A′|

. (10.370)

Thus, if Bob waits for only k′ = k + c qubits of Hawking radiation to be emitted after

Alice tosses in her k qubits, Bob can decode her qubits with excellent fidelity F ≥ 1−2−c.

Alice made a serious mistake. Rather than waiting for Ω(n) qubits to emerge from

the black hole, Bob can already decode Alice’s secret quite well when he has collected

just a few more than k qubits. And Bob is an excellent physicist, who knows enough

about black hole dynamics to infer the encoding unitary transformation U , information

he uses to find the right decoding map.

We could describe the conclusion, more prosaically, by saying that the random uni-

tary U applied to AB encodes a good quantum error-correcting code, which achieves

high-fidelity entanglement-assisted transmission of quantum information though an era-

sure channel with a high erasure probability. Of the n input qubits, only k′ randomly

selected qubits are received by Bob; the rest remain inside the black hole and hence are

inaccessible. The input qubits, then, are erased with probability p = (n − k′)/n, while

nearly error-free qubits are recovered from the input qubits at a rate

R =
k

n
= 1− p− k′ − k

n
; (10.371)

in the limit n→ ∞ with c = k′ − k fixed, this rate approaches 1− p, the entanglement-

assisted quantum capacity of the erasure channel.

So far, we’ve assumed that the emitted system A′ is a randomly selected subsystem

of AB. That won’t be true for a real black hole. However, it is believed that the in-

ternal dynamics of actual black holes mixes quantum information quite rapidly (the

fast scrambling conjecture). For a black hole with temperature T , it takes time of order

ℏ/kT for each qubit to be emitted in the Hawking radiation, and a time longer by only

a factor of log n for the dynamics to mix the black hole degrees of freedom sufficiently

for our decoupling estimate to hold with reasonable accuracy. For a solar mass black
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hole, Alice’s qubits are revealed just a few milliseconds after she deposits them, much

faster than the 1067 years she had hoped for! Because Bob holds the system RB which

purifies B, and because he knows the right decoding map to apply to A′RB, the black

hole behaves like an information mirror — Alice’s qubits bounce right back!

If Alice is more careful, she will dump her qubits into a young black hole instead. If

we assume that the initial black hole B is in a pure state, then σABRA
is also pure, and

the Haar-averaged L1 distance of σB′RA
from a product state is bounded above by√

|ABRA|
|A′|2

=

√
2n+k

22k′
=

1

2c
(10.372)

after

k′ =
1

2
(n+ k) + c (10.373)

qubits are emitted. In this case, Bob needs to wait a long time, until more than half of

the qubits in AB are radiated away. Once Bob has acquired k + 2c more qubits than

the number still residing in the black hole, he is empowered to decode Alice’s k qubits

with fidelity F ≥ 1 − 2−c. In fact, there is nothing special about Alice’s subsystem A;

by adjusting his decoding map appropriately, Bob can decode any k qubits he chooses

from among the n qubits in the initial black hole AB.

There is far more to learn about quantum information processing by black holes, an

active topic of current research, but we will not delve further into this fascinating topic

here. We can be confident, though, that the tools and concepts of quantum informa-

tion theory discussed in this book will be helpful for addressing the many unresolved

mysteries of quantum gravity, as well as many other open questions in the physical

sciences.

10.10 Summary

Shannon entropy and classical data compression. The Shannon entropy of an

ensemble X = {x, p(x)} is H(X) := EX [− log p(x)]; it quantifies the compressibility of

classical information. A message n letters long, where each letter is drawn independently

from X, can be compressed to H(X) bits per letter (and no further), yet can still be

decoded with arbitrarily good accuracy as n→ ∞.

Conditional entropy and information merging. The conditional entropy

H(X|Y ) = H(XY )−H(Y ) quantifies how much the information source X can be com-

pressed when Y is known. If n letters are drawn from XY , where Alice holds X and Bob

holds Y , Alice can convey X to Bob by sending H(X|Y ) bits per letter, asymptotically

as n→ ∞.

Mutual information and classical channel capacity. The mutual information

I(X;Y ) = H(X) + H(Y ) − H(XY ) quantifies how information sources X and Y are

correlated; when we learn the value of y we acquire (on the average) I(X;Y ) bits of

information about x, and vice versa. The capacity of a memoryless noisy classical com-

munication channel is C = maxX I(X;Y ). This is the highest number of bits per letter

that can be transmitted through n uses of the channel, using the best possible code,

with negligible error probability as n→ ∞.

Von Neumann entropy and quantum data compression. The von Neumann
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entropy of a density operator ρ is

H(ρ) = −trρ logρ; (10.374)

it quantifies the compressibility of an ensemble of pure quantum states. A mes-

sage n letters long, where each letter is drawn independently from the ensemble

{|φ(x)⟩, p(x)}, can be compressed to H(ρ) qubits per letter (and no further) where

ρ =
∑

X p(x)|φ(x)⟩⟨φ(x)|, yet can still be decoded with arbitrarily good fidelity as

n→ ∞.

Entanglement concentration and dilution. The entanglement E of a bipartite

pure state |ψ⟩AB is E = H(ρA) where ρA = trB(|ψ⟩⟨ψ|). With local operations and

classical communication, we can prepare n copies of |ψ⟩AB from nE Bell pairs (but not

from fewer), and we can distill nE Bell pairs (but not more) from n copies of |ψ⟩AB,
asymptotically as n→ ∞.

Accessible information. The Holevo chi of an ensemble E = {ρ(x), p(x)} of quan-

tum states is

χ(E) = H

(∑
x

p(x)ρ(x)

)
−
∑
x

p(x)H(ρ(x)). (10.375)

The accessible information of an ensemble E of quantum states is the maximal number

of bits of information that can be acquired about the preparation of the state (on the

average) with the best possible measurement. The accessible information cannot exceed

the Holevo chi of the ensemble. The product-state capacity of a quantum channel N is

C1(N ) = max
E

χ(N (E)). (10.376)

This is the highest number of classical bits per letter that can be transmitted through

n uses of the quantum channel, with negligible error probability as n → ∞, assuming

that each codeword is a product state.

Decoupling and quantum communication. In a tripartite pure state ϕRBE , we

say that systems R and E decouple if the marginal density operator of RE is a product

state, in which case R is purified by a subsystem of B. A quantum state transmitted

through a noisy quantum channel NA→B (with isometric dilation UA→BE) can be accu-

rately decoded if a reference system R which purifies channel’s input A nearly decouples

from the channel’s environment E.

Father and mother protocols. The father and mother resource inequalities specify

achievable rates for entanglement-assisted quantum communication and quantum state

transfer, respectively. Both follow from the decoupling inequality, which establishes a

sufficient condition for approximate decoupling in a tripartite mixed state. By com-

bining the father and mother protocols with superdense coding and teleportation, we

can derive achievable rates for other protocols, including entanglement-assisted classical

communication, quantum communication, entanglement distillation, and quantum state

merging.

Homage to Ben Schumacher:

Ben.
He rocks.
I remember
When
He showed me how to fit
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A qubit
In a small box.

I wonder how it feels
To be compressed.
And then to pass
A fidelity test.

Or does it feel
At all, and if it does
Would I squeal
Or be just as I was?

If not undone
I’d become as I’d begun
And write a memorandum
On being random.
Had it felt like a belt
Of rum?

And might it be predicted
That I’d become addicted,
Longing for my session
Of compression?

I’d crawl
To Ben again.
And call,
Put down your pen!
Don’t stall!
Make me small!

10.11 Bibliographical Notes

Cover and Thomas [2] is an excellent textbook on classical information theory. Shannon’s

original paper [3] is still very much worth reading.

Nielsen and Chuang [4] provide a clear introduction to some aspects of quantum

Shannon theory. Wilde [1] is a more up-to-date and very thorough account.

Properties of entropy are reviewed in [5]. Strong subadditivity of von Neumann en-

tropy was proven by Lieb and Ruskai [6], and the condition for equality was derived by

Hayden et al. [7]. The connection between separability and majorization was pointed

out by Nielsen and Kempe [8].

Bekenstein’s entropy bound was formulated in [9] and derived by Casini [10]. Entropic

uncertainty relations are reviewed in [11], and I follow their derivation. The original

derivation, by Maassen and Uffink [12] uses different methods.

Schumacher compression was first discussed in [13, 14], and Bennett et al. [15] de-

vised protocols for entanglement concentration and dilution. Measures of mixed-state

entanglement are reviewed in [16]. The reversible theory of mixed-state entanglement

was formulated by Brandão and Plenio [17] (a flaw in their analysis was addressed in

[18, 19]). Squashed entanglement was introduced by Christandl and Winter [20], and

its monogamy discussed by Koashi and Winter [21]. Brandão, Christandl, and Yard [22]

showed that squashed entanglement is positive for any nonseparable bipartite state. Do-



Exercises 81

herty, Parrilo, and Spedalieri [23] showed that every nonseparable bipartite state fails

to be k-extendable for some finite k.

The Holevo bound was derived in [24]. Peres-Wootters coding was discussed in [25].

The product-state capacity formula was derived by Holevo [26] and by Schumacher

and Westmoreland [27]. Hastings [28] showed that Holevo chi can be superadditive.

Horodecki, Shor, and Ruskai [29] introduced entanglement-breaking channels, and ad-

ditivity of Holevo chi for these channels was shown by Shor [30].

Necessary and sufficient conditions for quantum error correction were formulated in

terms of the decoupling principle by Schumacher and Nielsen [31]; that (regularized)

coherent information is an upper bound on quantum capacity was shown by Schumacher

[32], Schumacher and Nielsen [31], and Barnum et al. [33]. That coherent information

is an achievable rate for quantum communication was conjectured by Lloyd [34] and by

Schumacher [32], then proven by Shor [35] and by Devetak [36]. Devetak and Winter

[37] showed it is also an achievable rate for entanglement distillation. The quantum Fano

inequality was derived by Schumacher [32].

Approximate decoupling was analyzed by Schumacher and Westmoreland [38], and

used to prove capacity theorems by Devetak [36], by Horodecki et al. [39], by Hayden

et al. [40], and by Abeyesinghe et al. [41]. The entropy of Haar-random subsystems had

been discussed earlier, by Lubkin [42], Lloyd and Pagels [43], and Page [44]. Devetak,

Harrow, and Winter [45, 46] introduced the mother and father protocols and their de-

scendants. Devatak and Shor [47] introduced degradable quantum channels and proved

that coherent information is additive for these channels. Bennett et al. [48, 49] found

the single-letter formula for entanglement-assisted classical capacity. Superadditivity of

coherent information was discovered by Shor and Smolin [50] and by DiVincenzo et

al. [51]. Smith and Yard [52] found extreme examples of superadditivity, in which two

zero-capacity channels have nonzero capacity when used jointly. The achievable rate for

state merging was derived by Horodecki et al. [39], and used by them to prove strong

subadditivity of von Neumann entropy.

Decoupling was applied to Landuaer’s principle by Renner et al. [53], and to black

holes by Hayden and Preskill [54]. The fast scrambling conjecture was proposed by

Sekino and Susskind [55].

Exercises

10.1 Positivity of quantum relative entropy

a) Show that lnx ≤ x− 1 for all positive real x, with equality iff x = 1.

b) The (classical) relative entropy of a probability distribution {p(x)} relative to

{q(x)} is defined as

D(p∥q) ≡
∑
x

p(x) (log p(x)− log q(x)) . (10.377)

Show that

D(p∥q) ≥ 0 , (10.378)

with equality iff the probability distributions are identical. Hint: Apply the

inequality from (a) to ln (q(x)/p(x)).
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c) The quantum relative entropy of the density operator ρ with respect to σ is

defined as

D(ρ∥σ) = tr ρ (logρ− logσ) . (10.379)

Let {pi} denote the eigenvalues of ρ and {qa} denote the eigenvalues of σ.

Show that

D(ρ∥σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
, (10.380)

where Dia is a doubly stochastic matrix. Express Dia in terms of the eigen-

states of ρ and σ. (A matrix is doubly stochastic if its entries are nonneg-

ative real numbers, where each row and each column sums to one.)

d) Show that if Dia is doubly stochastic, then (for each i)

log

(∑
a

Diaqa

)
≥
∑
a

Dia log qa , (10.381)

with equality only if Dia = 1 for some a.

e) Show that

D(ρ∥σ) ≥ D(p∥r) , (10.382)

where ri =
∑

aDiaqa.

f) Show that D(ρ∥σ) ≥ 0, with equality iff ρ = σ.

10.2 Properties of von Neumann entropy

a) Use nonnegativity of quantum relative entropy to prove the subadditivity of von

Neumann entropy

H(ρAB) ≤ H(ρA) +H(ρB), (10.383)

with equality iff ρAB = ρA ⊗ ρB. Hint: Consider the relative entropy of

ρAB and ρA ⊗ ρB.

b) Use subadditivity to prove the concavity of the von Neumann entropy:

H(
∑
x

pxρx) ≥
∑
x

pxH(ρx) . (10.384)

Hint: Consider

ρAB =
∑
x

px (ρx)A ⊗ (|x⟩⟨x|)B , (10.385)

where the states {|x⟩B} are mutually orthogonal.

c) Use the condition

H(ρAB) = H(ρA) +H(ρB) iff ρAB = ρA ⊗ ρB (10.386)

to show that, if all px’s are nonzero,

H

(∑
x

pxρx

)
=
∑
x

pxH(ρx) (10.387)

iff all the ρx’s are identical.
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10.3 Monotonicity of quantum relative entropy

Quantum relative entropy has a property called monotonicity:

D(ρA∥σA) ≤ D(ρAB∥σAB); (10.388)

The relative entropy of two density operators on a system AB cannot be less than

the induced relative entropy on the subsystem A.

a) Use monotonicity of quantum relative entropy to prove the strong subadditivity

property of von Neumann entropy. Hint: On a tripartite system ABC,

consider the relative entropy of ρABC and ρA ⊗ ρBC .

b) Use monotonicity of quantum relative entropy to show that the action of a

quantum channel N cannot increase relative entropy:

D(N (ρ)∥N (σ)) ≤ D(ρ∥σ), (10.389)

Hint: Recall that any quantum channel has an isometric dilation.

10.4 Hypothesis testing

The (classical) relative entropy D(p∥q) charactizes the difference between the

distributions p(x) and q(x) in a sense that is useful for hypothesis testing. Suppose

that an unknown distribution is sampled n≫ 1 times, and we find that outcome x

occurs np(x) times. We would like to assess whether these outcomes are compatible

with sampling from a hypothetical distribution q(x). As discussed in §10.1.4, the
probability of obtaining this result if we are actually sampling from q(x) may be

estimated as

Probability = 2−nD(p∥q). (10.390)

a) Suppose

q(x) = p(x) + ε(x),
∑
x

ε(x) = 0. (10.391)

Write D(p∥q) as a function of p(x) and ε(x), expanded to quadratic order

in ε(x). For this purpose, suppose that the logarithms in the definition of

relative entropy are natural logs rather than logs to the base 2.

b) Suppose that

∥ε∥1 =
∑
x

|ε(x)| = δ. (10.392)

Using the quadratic approximation found in (a), find the minimal value of

D(p∥q) and the hypothetical distribution q(x) = p(x)+ε(x) that minimizes

it.

c) Suppose we toss a coin n times, and the outcome “heads” is observed n
(
1
2 + δ

2

)
times. Hence p(heads) = 1

2+
δ
2 and p(tails) = 1

2−
δ
2 . Consider the hypothesis

that the coin is unbiased: q(heads) = q(tails) = 1
2 . Compute the relative

entropy D(p∥q) to quadratic order in δ.

d) A coin is tossed 1 million times. Use the result of (c) to estimate the probabil-

ity of the coin coming up heads 505,000 times, assuming that the coin is

unbiased.

10.5 Separability and majorization

The hallmark of entanglement is that in an entangled state the whole is less

random than its parts. But in a separable state the correlations are essentially
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classical and so are expected to adhere to the classical principle that the parts

are less disordered than the whole. The objective of this problem is to make this

expectation precise by showing that if the bipartite (mixed) state ρAB is separable,

then

λ(ρAB) ≺ λ(ρA) , λ(ρAB) ≺ λ(ρB) . (10.393)

Here λ(ρ) denotes the vector of eigenvalues of ρ, and ≺ denotes majorization.

A separable state can be realized as an ensemble of pure product states, so that

if ρAB is separable, it may be expressed as

ρAB =
∑
a

pa |ψa⟩⟨ψa| ⊗ |φa⟩⟨φa| . (10.394)

We can also diagonalize ρAB, expressing it as

ρAB =
∑
j

rj |ej⟩⟨ej | , (10.395)

where {|ej⟩} denotes an orthonormal basis for AB; then by the HJW theorem,

there is a unitary matrix V such that

√
rj |ej⟩ =

∑
a

Vja
√
pa|ψa⟩ ⊗ |φa⟩ . (10.396)

Also note that ρA can be diagonalized, so that

ρA =
∑
a

pa|ψa⟩⟨ψa| =
∑
µ

sµ|fµ⟩⟨fµ| ; (10.397)

here {|fµ⟩} denotes an orthonormal basis for A, and by the HJW theorem, there

is a unitary matrix U such that
√
pa|ψa⟩ =

∑
µ

Uaµ
√
sµ|fµ⟩ . (10.398)

Now show that there is a doubly stochastic matrix D such that

rj =
∑
µ

Djµsµ . (10.399)

That is, you must check that the entries of Djµ are real and nonnegative, and

that
∑

j Djµ = 1 =
∑

µDjµ. Thus we conclude that λ(ρAB) ≺ λ(ρA). Just by

interchanging A and B, the same argument also shows that λ(ρAB) ≺ λ(ρB).

Remark: Note that it follows from the Schur concavity of Shannon entropy that,

if ρAB is separable, then the von Neumann entropy has the properties H(AB) ≥
H(A) and H(AB) ≥ H(B). Thus, for separable states, conditional entropy is non-

negative: H(A|B) = H(AB) −H(B) ≥ 0 and H(B|A) = H(AB) −H(A) ≥ 0. In

contrast, if H(A|B) is negative, then according to the hashing inequality the state

of AB has positive distillable entanglement −H(A|B), and therefore is surely not

separable.

10.6 Additivity of squashed entanglement

Suppose that Alice holds systems A, A′ and Bob holds systems B, B′. How is the

entanglement of AA′ with BB′ related to the entanglement of A with B and A′ with

B′? In this problem we will show that the squashed entanglement is superadditive,

Esq(ρABA′B′) ≥ Esq(ρAB) + Esq(ρA′B′) (10.400)
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and is strictly additive for a tensor product,

Esq(ρAB ⊗ ρA′B′) = Esq(ρAB) + Esq(ρA′B′). (10.401)

a) Use the chain rule for mutual information eq.(10.201) and eq.(10.202) and the

nonnegativity of quantum conditional mutual information to show that

I(AA′;BB′|C) ≥ I(A;B|C) + I(A′;B′|AC), (10.402)

and show that eq.(10.400) follows.

b) Show that for any extension ρABC ⊗ ρA′B′C′ of the product state ρAB ⊗ ρA′B′ ,

we have

I(AA′;BB′|CC ′) ≤ I(A;B|C) + I(A′;B′|C ′). (10.403)

Conclude that

Esq(ρAB ⊗ ρA′B′) ≤ Esq(ρAB) + Esq(ρA′B′), (10.404)

which, when combined with eq.(10.400), implies eq.(10.401).

10.7 The first law of von Neumann entropy

Writing the density operator in terms of itsmodular HamiltonianK as in §10.2.6,

ρ =
e−K

tr (e−K)
, (10.405)

consider how the entropy S(ρ) = −tr (ρ lnρ) changes when the density operator is

perturbed slightly:

ρ → ρ′ = ρ+ δρ. (10.406)

Since ρ and ρ′ are both normalized density operators, we have tr (δρ) = 0. Show

that

S(ρ′)− S(ρ) = tr
(
ρ′K

)
− tr (ρK) +O

(
(δρ)2

)
; (10.407)

that is,

δS = δ⟨K⟩ (10.408)

to first order in the small change in ρ. This statement generalizes the first law

of thermodynamics; for the case of a thermal density operator with K = H/T

(where H is the Hamiltonian and T is the temperature), it becomes the more

familiar statement

δE = δ⟨H⟩ = TδS. (10.409)

10.8 Distinguishing two nonorthogonal pure states

a) Consider an ensemble in which the two pure states of a single qubit

|φ0⟩ =
(
1

0

)
, |φ1⟩ =

(
cos(θ/2)

sin(θ/2)

)
(10.410)

occur equiprobably, where θ ∈ [0, 2π). The two states both lie in the xz

plane of the Bloch sphere, and the angle between them is θ. Suppose that

a state is drawn from this ensemble and then the Pauli observable

Z = |0⟩⟨0| − |1⟩⟨1| (10.411)
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is measured. Compute the information gain achieved by this measurement.

b) Now suppose that, instead of Z, the rotated observable

Z ′ = |ψ⟩⟨ψ| − |ψ⊥⟩⟨ψ⊥| (10.412)

is measured, where

|ψ⟩ =
(
cos(θ/4− π/4)

sin(θ/4− π/4)

)
, |ψ⊥⟩ =

(
cos(θ/4 + π/4)

sin(θ/4 + π/4)

)
. (10.413)

Compute the information gain in this case. Make a plot showing the two

functions of θ computed in parts (a) and (b). Which has the higher infor-

mation gain?

c) For θ = π/2 and for θ = 2π/3, find the numerical value of the information gain,

in bits, achieved by measuring Z and Z ′.

10.9 The Peres–Wootters POVM.

Consider the Peres–Wootters information source described in §10.6.4. It prepares
one of the three states

|Φa⟩ = |φa⟩ ⊗ |φa⟩, a = 1, 2, 3, (10.414)

each occurring with a priori probability 1
3 , where the |φa⟩’s are defined in

eq.(10.219).

a) Express the density matrix

ρ =
1

3

(∑
a

|Φa⟩⟨Φa|

)
, (10.415)

in terms of the Bell basis of maximally entangled states {|ϕ±⟩, |ψ±⟩}, and
compute H(ρ).

b) For the three vectors |Φa⟩, a = 1, 2, 3, construct the “pretty good measurement”

defined in eq.(10.232). (Again, expand the |Φa⟩’s in the Bell basis.) In this

case, the PGM is an orthogonal measurement. Express the elements of the

PGM basis in terms of the Bell basis.

c) Compute the mutual information of the PGM outcome and the preparation.

10.10 An adaptive protocol

Consider again the Peres-Wootters ensemble in which the three two-qubit states

|Φa⟩ = |φa⟩ ⊗ |φa⟩, a = 1, 2, 3 (10.416)

occur equiprobably. A state is drawn from this ensemble, and we are to measure the

two-qubit state with the goal of gaining information about the value of a. Instead of

doing the collective measurement described in §10.6.4, consider an adaptive strategy

in which the two qubits are measured separately. On the first qubit we perform the

POVM with the three outcomes

Ea =
2

3
(I − |φa⟩⟨φa|) , a = 1, 2, 3; (10.417)

this measurement excludes one of the three states, but provides no information to

distinguish the other two states. Then we perform a measurement on the second

qubit that is conditioned on the outcome of the first measurement. Guided by

the results of Exercise 10.8, choose the most informative measurement to perform
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on the second qubit, and then compute the information gain achieved by this

adaptive procedure. Compare with the information gain achieved by the collective

measurement described in §10.6.4.
10.11 An ensemble of four pure states

a) Consider an ensemble in which the four pure states of a single qubit

|φ0⟩ =
(
1

0

)
, |φ1⟩ =

(
0

1

)
, |φ2⟩ =

(
1√
2
1√
2

)
, |φ3⟩ =

(
1√
2

− 1√
2

)
, (10.418)

occur equiprobably. Compute the information gain achieved by measuring

Z for a state drawn from this ensemble.

b) Now compute the information gain achieved by measuring Z ′ for θ = π/2.

Compare with the result of (a).

10.12 An infinite ensemble

a) We now consider an ensemble with an infinite number of possible pure states,

namely the uniform distribution on θ ∈ [0, 2π) where

|φ(θ)⟩ =
(
cos(θ/2)

sin(θ/2)

)
. (10.419)

That is, when a state is sampled from this ensemble, a value in the interval

[θ, θ+dθ] occurs with probability dθ/2π. How much information do we gain

about the value of θ by measuring Z? To avoid having to take a difference

of infinite quantities, answer this question by computing the conditional

entropy H(Y |θ) and using

I(θ;Y ) = H(Y )−H(Y |θ), (10.420)

where Y denotes the probability distribution of measurement outcomes.

b) Hoping to gain more information, let’s try a POVM with many outcomes rather

than a two-outcome orthogonal measurement. Choose the POVM elements

to be

Ek =
2

n
|φ(θk)⟩⟨φ(θk)|, k = 0, 1, 2, . . . , n−1, (10.421)

where

θk =
2πk

n
. (10.422)

Check the normalization condition∑
k

Ek = I, (10.423)

and compute the information gain achieved by this measurement. Compare

with the result of (a).

10.13 Approximate cloning and the depolarizing channel

Consider a qubit channel NA→B
θ with the isometric dilation UA→BEF

θ which acts

on an orthonormal basis as

|0⟩A 7→ |ϕ0⟩BEF = cos θ|00⟩BE |0⟩F + sin θ|ψ+⟩BE |1⟩F , (10.424)

|1⟩A 7→ |ϕ1⟩BEF = cos θ|11⟩BE |1⟩F + sin θ|ψ+⟩BE |0⟩F , (10.425)
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where

|ψ+⟩ = 1√
2
(|01⟩+ |10⟩) , (10.426)

and 0 ≤ θ ≤ π/2. Here we have split the channel’s environment into two parts

labeled E and F , and we have constructed the isometry to be symmetric under the

interchange of B and E. Hence the channel NA→B
θ obtained by tracing out EF is

identical to the channel NA→E
θ obtained by tracing out BF . It follows that NA→B

θ

has zero capacity. To reach this conclusion, note that if Alice sends a quantum state

to Bob via many uses of the isometry UA→BEF , and Bob (who receives the output

system B) is able to decode the state with high fidelity, then Eve (who receives the

output system E) receives the same output as Bob and therefore she can decode

the state as well. Thus the no-cloning theorem ensures that high-fidelity decoding

of the output is not possible.

a) The channel NA→B
θ is actually a Pauli channel, which can be expressed as

Nθ(ρ) = f(θ)ρ+ g(θ)ZρZ + h(θ)
I

2
. (10.427)

Find the functions f , g, and h.

b) We may choose a value θ = θ0 such that g(θ0) = 0, in which case N becomes a

depolarizing channel with error probability p:

Nθ0(ρ) =

(
1− 4p

3

)
ρ+

(
4p

3

)
I

2
. (10.428)

Find this value θ0 and the corresponding value of p. Our no-cloning argu-

ment shows that the depolarizing channel with this error probability p has

zero capacity.

c) Tracing out F from the isometry UA→BEF , we obtain a channel NA→BE , which

may be regarded as an approximate cloning machine. If Alice sends a pure

state |ψ⟩ through the channel, the marginal density operators ρB and ρE
received by Bob and Eve are identical, each approximating the input state

with fidelity

F = ⟨ψ|ρB|ψ⟩ = ⟨ψ|ρE |ψ⟩. (10.429)

For the value θ = θ0 found in (b), compute the fidelity achieved by this

approximate cloner.

d) For θ ̸= θ0, we have g(θ) ̸= 0, and therefore the fidelity achieved by the ap-

proximate cloner depends on the pure state input |ψ⟩. In that case we may

consider the worst-case fidelity Fmin(θ), the lowest value of F achieved for

any pure state input to NA→BE . Find the value θ = θ1 such that this

worst-case fidelity is as large as possible and compute Fmin(θ1). (Be sure to

recall that g(θ) changes sign at θ = θ0.)

10.14 Information gain for a quantum state drawn from the uniform ensemble

Suppose Alice prepares a quantum state drawn from the ensemble {ρ(x), p(x)}
and Bob performs a measurement {E(y)} yielding outcome y with probability

p(y|x) = tr (E(y)ρ(x)). As noted in §10.6.1, Bob’s information gain about Alice’s
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preparation is the mutual information I(X;Y ) = H(X) −H(X|Y ). If x is a con-

tinuous variable, while y is discrete, it is more convenient to use the symmetry of

mutual information to write I(X;Y ) = H(Y )−H(Y |X), where

H(Y |X) =
∑
y

∫
dx · p(x) · p(y|x) · log p(y|x); (10.430)

here p(x) is a probability density (that is, p(x)dx is the probability for x to lie in

the interval [x, x+ dx]).

For example, suppose that Alice prepares an arbitrary pure state |φ⟩ chosen

from the uniform ensemble in a d-dimensional Hilbert space, and Bob performs an

orthogonal measurement projecting onto the basis {|ey⟩}, hoping to learn something

about what Alice prepared. Then Bob obtains outcome y with probability

p(y|θ) = |⟨ey|φ⟩|2 ≡ cos2 θ (10.431)

where θ is the angle between |φ⟩ and |ey⟩. Because Alice’s ensemble is uniform,

Bob’s outcomes are also uniformly distributed; hence H(Y ) = log d. Furthermore,

the measurement outcome y reveals only information about θ; Bob learns nothing

else about |φ⟩. Therefore, eq.(10.430) implies that the information gain may be

expressed as

I(X;Y ) = log d− d

∫
dθ · p(θ) · cos2 θ · log cos2 θ. (10.432)

Here p(θ)dθ is the probability density for the vector |φ⟩ to point in a direction

making angle θ with the axis |ey⟩, where 0 ≤ θ ≤ π/2.

a) Show that

p(θ) · dθ = −(d− 1)
[
1− cos2 θ

]d−2 · d cos2 θ. (10.433)

Hint: Choose a basis in which the fixed axis |ey⟩ is

|ey⟩ = (1, 0⃗) (10.434)

and write

|φ⟩ = (eiϕ cos θ, ψ⊥), (10.435)

where θ ∈ [0, π/2], and |ψ⊥⟩ denotes a complex (d−1)-component vector

with length sin θ. Now note that the phase ϕ resides on a circle of radius cos θ

(and hence circumference 2π cos θ), while |ψ⊥⟩ lies on a sphere of radius sin θ

(thus the volume of the sphere, up to a multiplicative numerical constant,

is sin2d−3 θ).

b) Now evaluate the integral eq. (10.432) to show that the information gain from

the measurement, in nats, is

I(X;Y ) = ln d−
(
1

2
+

1

3
+ · · ·+ 1

d

)
. (10.436)

(Information is expressed in nats if logarithms are natural logarithms; I

in nats is related to I in bits by Ibits = Inats/ ln 2.) Hint: To evaluate the

integral ∫ 1

0
dx (1− x)px lnx , (10.437)
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observe that

x lnx =
d

ds
xs
∣∣∣
s=1

, (10.438)

and then calculate
∫ 1
0 dx (1− x)pxs by integrating by parts repeatedly.

c) Show that in the limit of large d, the information gain, in bits, approaches

Id=∞ =
1− γ

ln 2
= .60995 . . . , (10.439)

where γ = .57721 . . . is Euler’s constant.

Our computed value of H(Y |X) may be interpreted in another way: Suppose

we fix an orthogonal measurement, choose a typical state, and perform the mea-

surement repeatedly on that chosen state. Then the measurement outcomes will

not be uniformly distributed. Instead the entropy of the outcomes will fall short of

maximal by .60995 bits, in the limit of large Hilbert space dimension.

10.15 Fano’s inequality

Suppose X = {x, p(x)} is a probability distribution for a letter x drawn from

an alphabet of d possible letters, and that XY is the joint distribution for x and

another random variable y which is correlated with x. Upon receiving y we estimate

the value of x by evaluating a function x̂(y). We may anticipate that if our estimate

is usually correct, then the conditional entropy H(X|Y ) must be small. In this

problem we will confirm that expectation.

Let e ∈ {0, 1} denote a binary random variable which takes the value e = 0

if x = x̂(y) and takes the value e = 1 if x ̸= x̂(y), and let XY E denote the

joint distribution for x, y, e. The error probability Pe is the probability that e = 1,

averaged over this distribution. Our goal is to derive an upper bound on H(X|Y )

depending on Pe.

a) Show that

H(X|Y ) = H(X|Y E) +H(E|Y )−H(E|XY ). (10.440)

Note that H(E|XY ) = 0 because e is determined when x and y are know, and

that H(E|Y ) ≤ H(E) because mutual information is nonnegative. Therefore,

H(X|Y ) ≤ H(X|Y E) +H(E). (10.441)

b) Noting that

H(X|Y E) = p(e = 0)H(X|Y, e = 0) + p(e = 1)H(X|Y, e = 1), (10.442)

and that H(X|Y, e = 0) = 0 (because x = x̂(y) is determined by y when

there is no error), show that

H(X|Y E) ≤ Pe log2(d− 1). (10.443)

c) Finally, show that

H(X|Y ) ≤ H2(Pe) + Pe log2(d− 1), (10.444)

which is Fano’s inequality.

d) Use Fano’s inequality to derive eq.(10.55), hence completing the proof that

the classical channel capacity C is an upper bound on achievable rates for

communication over a noisy channel with negligible error probability.
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10.16 A quantum version of Fano’s inequality

a) In a d-dimensional system, suppose a density operator ρ approximates the pure

state |ψ⟩ with fidelity

F = ⟨ψ|ρ|ψ⟩ = 1− ε. (10.445)

Show that

H(ρ) ≤ H2(ε) + ε log2(d− 1). (10.446)

Hint: Recall that if a complete orthogonal measurement performed on the

state ρ has the distribution of outcomes X, then H(ρ) ≤ H(X), where

H(X) is the Shannon entropy of X.

b) As in §10.7.2, suppose that the noisy channel NA→B acts on the pure state ψRA,

and is followed by the decoding map DB→C . Show that

H(R)ρ − Ic(R ⟩B)ρ ≤ 2H(RC)σ, (10.447)

where

ρRB = N (ψRA), σRC = D ◦ N (ψRA). (10.448)

Therefore, if the decoder’s output (the state of RC) is almost pure, then the

coherent information of the channel N comes close to matching its input

entropy. Hint: Use the data processing inequality Ic(R ⟩C)σ ≤ Ic(R ⟩B)ρ
and the subadditivity of von Neumann entropy. It is convenient to consider

the joint pure state of the reference system, the output, and environments

of the dilations of N and D.

c) Suppose that the decoding map recovers the channel input with high fidelity,

F (D ◦ N (ψRA), ψRC) = 1− ε. (10.449)

Show that

H(R)ρ − Ic(R ⟩B)ρ ≤ 2H2(ε) + 2ε log2(d
2 − 1), (10.450)

assuming that R and C are d-dimensional. This is a quantum version of

Fano’s inequality, which we may use to derive an upper bound on the quan-

tum channel capacity of N .

10.17 Mother protocol for the GHZ state

The mother resource inequality expresses an asymptotic resource conversion that

can be achieved if Alice, Bob, and Eve share n copies of the pure state ϕABE : by

sending n
2 I(A;E) qubits to Bob, Alice can destroy the correlations of her state with

Eve’s state, so that Bob alone holds the purification of Eve’s state, and furthermore

Alice and Bob share n
2 I(A;B) ebits of entanglement at the end of the protocol; here

I(A;E) and I(A;B) denote quantum mutual informations evaluated in the state

ϕABE .

Normally, the resource conversion can be realized with arbitrarily good fidelity

only in the limit n → ∞. But in this problem we will see that the conversion can

be perfect if Alice, Bob and Eve share only n = 2 copies of the three-qubit GHZ

state

|ϕ⟩ABE =
1√
2
(|000⟩+ |111⟩) . (10.451)
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The protocol achieving this perfect conversion uses the notion of coherent classical

communication defined in Chapter 4.

a) Show that in the GHZ state |ϕ⟩ABE , I(A;E) = I(A;B) = 1. Thus, for this

state, the mother inequality becomes

2⟨ϕABE⟩+ [q → q]AB ≥ [qq]AB + 2⟨ϕ′B1E⟩ . (10.452)

b) Suppose that in the GHZ state Alice measures the Pauli operator X, gets the

outcome +1 and broadcasts her outcome to Bob and Eve. What state do

Bob and Eve then share? What if Alice gets the outcome −1 instead?

c) Suppose that Alice, Bob, and Eve share just one copy of the GHZ state ϕABE .

Find a protocol such that, after one unit of coherent classical communication

from Alice to Bob, the shared state becomes |ϕ+⟩AB⊗|ϕ+⟩BE , where |ϕ+⟩ =
(|00⟩+ |11⟩) /

√
2 is a maximally entangled Bell pair.

d) Now suppose that Alice, Bob, and Eve start out with two copies of the GHZ

state, and suppose that Alice and Bob can borrow an ebit of entanglement,

which will be repaid later, to catalyze the resource conversion. Use coher-

ent superdense coding to construct a protocol that achieves the (catalytic)

conversion eq. (10.452) perfectly.

10.18 Degradability of amplitude damping and erasure

The qubit amplitude damping channel NA→B
a.d. (p) discussed in §3.4.3 has the

dilation UA→BE such that

U :|0⟩A 7→ |0⟩B ⊗ |0⟩E ,

|1⟩A 7→
√

1− p |1⟩B ⊗ |0⟩E +
√
p |0⟩B ⊗ |1⟩E ;

a qubit in its “ground state” |0⟩A is unaffected by the channel, while a qubit in

the “excited state” |1⟩A decays to the ground state with probability p, and the

decay process excites the environment. Note that U is invariant under interchange

of systems B and E accompanied by transformation p↔ (1−p). Thus the channel
complementary to NA→B

a.d. (p) is NA→E
a.d. (1− p).

a) Show that NA→B
a.d. (p) is degradable for p ≤ 1/2. Therefore, the quantum capac-

ity of the amplitude damping channel is its optimized one-shot coherent

information. Hint: It suffices to show that

NA→E
a.d. (1− p) = NB→E

a.d. (q) ◦ NA→B
a.d. (p), (10.453)

where 0 ≤ q ≤ 1.

The erasure channel NA→B
erase (p) has the dilation UA→BE such that

U : |ψ⟩A 7→
√

1− p |ψ⟩B ⊗ |e⟩E +
√
p |e⟩B ⊗ |ψ⟩E ; (10.454)

Alice’s system passes either to Bob (with probability 1−p) or to Eve (with probabil-

ity p), while the other party receives the “erasure symbol” |e⟩, which is orthogonal

to Alice’s Hilbert space. Because U is invariant under interchange of systems B

and E accompanied by the transformation p↔ (1−p), the channel complementary

to NA→B
erase (p) is NA→E

erase (1− p).

b) Show that NA→B
erase (p) is degradable for p ≤ 1/2. Therefore, the quantum capacity
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of the erasure channel is its optimized one-shot coherent information. Hint:

It suffices to show that

NA→E
erase (1− p) = NB→E

erase (q) ◦ NA→B
erase (p), (10.455)

where 0 ≤ q ≤ 1.

c) Show that for p ≤ 1/2 the quantum capacity of the erasure channel is

Q(NA→B
erase (p)) = (1− 2p) log2 d, (10.456)

where A is d-dimensional, and that the capacity vanishes for 1/2 ≤ p ≤ 1.

10.19 Quantum Singleton bound

As noted in chapter 7, an [[n, k, d]] quantum error-correcting code (k protected

qubits in a block of n qubits, with code distance d) must obey the constraint

n− k ≥ 2(d− 1), (10.457)

the quantum Singleton bound. This bound is actually a corollary of a stronger

statement which you will prove in this exercise.

Suppose that in the pure state ϕRA the reference system R is maximally entan-

gled with a code subspace of A, and that E1 and E2 are two disjoint correctable

subsystems of system A (erasure of either E1 or E2 can be corrected). You are to

show that

log |A| − log |R| ≥ log |E1|+ log |E2|. (10.458)

Let Ec denote the subsystem of A complementary to E1E2, so that A = EcE1E2.

a) Recalling the error correction conditions ρRE1
= ρR⊗ρE1

and ρRE2
= ρR⊗ρE2

,

show that ϕREcE1E2 has the property

H(R) = H(Ec)− 1

2
I(Ec;E1)−

1

2
I(Ec;E2). (10.459)

b) Show that eq.(10.459) implies eq.(10.458).

10.20 Noisy superdense coding and teleportation.

a) By converting the entanglement achieved by the mother protocol into classical

communication, prove the noisy superdense coding resource inequality:

Noisy SD : ⟨ϕABE⟩+H(A)[q → q] ≥ I(A;B)[c→ c]. (10.460)

Verify that this matches the standard noiseless superdense coding resource

inequality when ϕ is a maximally entangled state of AB.

b) By converting the entanglement achieved by the mother protocol into quantum

communication, prove the noisy teleportation resource inequality:

Noisy TP : ⟨ϕABE⟩+ I(A;B)[c→ c] ≥ Ic(A⟩B)[q → q]. (10.461)

Verify that this matches the standard noiseless teleportation resource in-

equality when ϕ is a maximally entangled state of AB.

10.21 The cost of erasure

Erasure of a bit is a process in which the state of the bit is reset to 0. Erasure

is irreversible — knowing only the final state 0 after erasure, we cannot determine

whether the initial state before erasure was 0 or 1. This irreversibility implies

that erasure incurs an unavoidable thermodynamic cost. According to Landauer’s
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Principle, erasing a bit at temperature T requires work W ≥ kT log 2. In this

problem you will verify that a particular procedure for achieving erasure adheres

to Landauer’s Principle.

Suppose that the two states of the bit both have zero energy. We erase the bit

in two steps. In the first step, we bring the bit into contact with a reservoir at

temperature T > 0, and wait for the bit to come to thermal equilibrium with the

reservoir. In this step the bit “forgets” its initial value, but the bit is not yet erased

because it has not been reset.

We reset the bit in the second step, by slowly turning on a control field λ which

splits the degeneracy of the two states. For λ ≥ 0, the state 0 has energy E0 = 0

and the state 1 has energy E1 = λ. After the bit thermalizes in step one, the value

of λ increases gradually from the initial value λ = 0 to the final value λ = ∞; the

increase in λ is slow enough that the qubit remains in thermal equilibrium with

the reservoir at all times. As λ increases, the probability P (0) that the qubit is in

the state 0 approaches unity — i.e., the bit is reset to the state 0, which has zero

energy.

(a) For λ ̸= 0, find the probability P (0) that the qubit is in the state 0 and the

probability P (1) that the qubit is in the state 1.

(b) How much work is required to increase the control field from λ to λ+ dλ?

(c) How much work is expended as λ increases slowly from λ = 0 to λ = ∞? (You

will have to evaluate an integral, which can be done analytically.)

10.22 Proof of the decoupling inequality

In this problem we complete the derivation of the decoupling inequality sketched

in §10.9.1.

a) Verify eq.(10.350).

To derive the expression for EU [MAA′(U)] in eq.(10.354), we first note that the

invariance property eq.(10.339) implies that EU [MAA′(U)] commutes with V ⊗V

for any unitary V . Therefore, by Schur’s lemma, EU [MAA′(U)] is a weighted sum

of projections onto irreducible representations of the unitary group. The tensor

product of two fundamental representations of U(d) contains two irreducible rep-

resentations — the symmetric and antisymmetric tensor representations. Therefore

we may write

EU [MAA′(U)] = csym Π
(sym)
AA′ + canti Π

(anti)
AA′ ; (10.462)

here Π
(sym)
AA′ is the orthogonal projector onto the subspace of AA′ symmetric un-

der the interchange of A and A′, Π
(anti)
AA′ is the projector onto the antisymmetric

subspace, and csym, canti are suitable constants. Note that

Π
(sym)
AA′ =

1

2
(IAA′ + SAA′) ,

Π
(anti)
AA′ =

1

2
(IAA′ − SAA′) , (10.463)

where SAA′ is the swap operator, and that the symmetric and antisymmetric sub-

spaces have dimension 1
2 |A| (|A|+ 1) and dimension 1

2 |A| (|A| − 1) respectively.

Even if you are not familiar with group representation theory, you might re-

gard eq.(10.462) as obvious. We may write MAA′(U) as a sum of two terms, one

symmetric and the other antisymmetric under the interchange of A and A′. The
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expectation of the symmetric part must be symmetric, and the expectation value

of the antisymmetric part must be antisymmetric. Furthermore, averaging over the

unitary group ensures that no symmetric state is preferred over any other.

b) To evaluate the constant csym, multiply both sides of eq.(10.462) by Π
(sym)
AA′ and

take the trace of both sides, thus finding

csym =
|A1|+ |A2|
|A|+ 1

. (10.464)

c) To evaluate the constant canti, multiply both sides of eq.(10.462)) by Π
(anti)
AA′ and

take the trace of both sides, thus finding

canti =
|A1| − |A2|
|A| − 1

. (10.465)

d) Using

cI =
1

2
(csym + canti) , cS =

1

2
(csym − canti) (10.466)

prove eq.(10.355).
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