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1. Vortices
1.1. The Nielsen-Olesen vortex

A vortex is a stable time-independent solution to a set of classical field
equations that has finite energy in two spatial dimensions; it is a two-
dimensional soliton. In three spatial dimensions, a vortex becomes a
string, a classical solution with finite energy per unit length. A semi-
classical expansion about the classical vortex or string solution can be
carried out order by order in #, but we will at first confine our attention
to the classical approximation. ,

The prototypical example of a vortex [1] occurs in the Abelian Higgs
model, a particle physicist’s version of a superconductor. This model has
a spontaneously broken U(1) gauge symmetry. Its Lagrange density may
be written

L=—iF,,F* +|D,¢[ - V(l¢]), (1.1.1)

where ¢ is a charged complex scalar field and D, =4, —ieA, is the
gauge-covariant derivative. Let us suppose that V(|¢|) has its minimum
at a nonzero value of |¢|; if it is a quartic polynomial in ¢ and ¢" (as
will be required by renormalizability when we quantize this field theory
in (3+1) dimensions), it must have the form (up to an irrelevant additive
constant)

7)) =% (|¢f*—3v%)?, (1.1.2)

where v is real and positive. A

The classical ground state of this theory is a field configuration that
is constant (at least in a particular gauge) and has |¢|= v/v2. Thus, the
U(1) gauge symmetry is “spontaneously broken”. There are many vacua,
each labeled by the phase of the expectation value of ¢. This apparent
vacuum degeneracy is really an artifact, however, because the different
vacua are related by gauge transformations. The true spectrum of the
theory is most conveniently determined by choosing the unitary gauge,
in which ¢ 1is real. Writing

¢=(v+9¢")/V2,
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Vortices and monopoles 239

where ¢’ is a real scalar field, one can expand L to quadratic order to
find that the perturbative spectrum consists of a vector boson with mass
my=ev and a scalar with mass mg=+/A v. The Higgs mechanism has
occurred; there is no Goldstone boson, but the photon has acquired a
mass. '

One might wish to investigate the spectrum of this theory beyond
perturbation theory. More specifically, one might ask whether there exist
stable time-independent solutions to the classical field equations with
finite energy other than the vacuum solution. If it exists, such a solution
is a localized lump of energy density known as a soliton; it behaves like
a particle in the classical theory, and can be expected to survive in the
spectrum of the quantum theory.

I can attempt to construct a soliton by the following strategy: Suppose
I find a particular field configuration of finite energy that I know cannot
be continuously deformed to the trivial vacuum configuration while the
energy remains finite. Starting with that configuration, I deform it until
a local minimum of the energy functional is obtained. The final configura-
tion is a stable time-independent classical solution, guaranteed to be
different from the vacuum solution.

Furthermore, a starting configuration with the required properties
exists, in the Abelian Higgs model in two spatial dimensions. To see this,
consider the properties of finite-energy field configurations. The energy
of a time-independent field configuration is a sum of three nonnegative
terms,

E= J d’r [3(E.EE'+ BB")+ Di¢pD'¢* + V(|o|)], (1.1.3)

each of which must be finite if the total energy is finite. In particular,
for the third term to be finite, V(|¢|) must approach zero at spatial
infinity, and |¢| must therefore approach v/v2. We may think of two-
dimensional space as being bounded by a big circle at r=c0. Finiteness
of the energy requires |¢|= v/+2 on this circle, but finiteness of the third
term places no restriction on the phase of ¢. We may have

¢ (r, 6) — (v/v2) %, - (1.1.4)
where €°® is an arbitrary phase factor, a periodic function of the polar

angle 6 with period 2.
Thus, associated with every finite-energy field configuration is a map-
ping from the circle at spatial infinity to the circle defined by the phase
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of ¢. A mapping from a circle to a circle has a winding number n, which
we may define as

n=§1;r—[0'(0=27r)—-0’(0=0)]. (1.1.5)

An important property of the winding number is that it is an integer.
Because an integer cannot change continuously, the winding number
must be preserved by smooth deformations of the fields that preserve
the finiteness of the energy; it is a “topological invariant”. Therefore a
configuration with nonzero winding number cannot be continuously
deformed to the vacuum, which has zero winding number. Moreover,
since time evolution is continuous, the winding number must be a constant
of the motion. We have a discovered a “topological conservation law”
that, unlike more familiar conservation laws, is not directly associated
with any symmetry of the action.

We can apparently construct a soliton by finding the configuration of
lowest energy with, say, unit winding number. (This configuration is
called a “vortex”. The behavior of ¢ on the circle at r =00 is sketched
in fig. 1.) But we must verify that it is really possible for a configuration
with nonzero winding number to have finite energy. In particular, we
should worry about the second term in eq. (1.1.3), which involves the
covariant gradient of ¢. & surely has a nonvanishing gradient in the
circumferential direction for n # 0, because o, by eq. (1.1.5), is a nontrivial
function of 6. The gradient term

19
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2

(1.1.6)

Fig. 1. The scalar field at r =00 in the vortex solution.
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can be finite only if the gauge field behaves for large r like

(1.1.7)

the corrections falling off faster than 1/r; otherwise, the energy diverges
logarithmically at large r.

The gauge field eq. (1.1.7) is a “pure gauge”; thus, the prescribed
asymptotic large r behavior of A, permits the field F,, to decay
sufficiently rapidly at large r for the first term in eq. (1.1.3) to be finite.
We have succeeded, therefore, in demonstrating the existence of a finite-
energy field configuration with winding number n=1, and hence, of a
soliton.

The gauge field cannot be pure gauge everywhere, if n# 0. The total
magnetic flux through the plane is readily evaluated using Stokes’
Theorem. The flux

1 CD=§ rd6A0=-1é[0'(277)—a'(0)]=-2-£—Tn (1.1.8)

is quantitized, and the number of flux quanta is the winding number.

A nonsingular field configuration with n# 0 has another important
property: the field ¢ must vanish somewhere. For if ¢ has no singularities
and no zeros, its phase o is well defined everywhere. By smoothly
shrinking the circle at infinity to an infinitesimal circle around the origin,
we can smoothly deform the mapping o(9), which has winding number
n#0, to the trivial mapping o = constant. This is impossible. We are
forced to conclude that there is at least one point at which o is ill-defined,
because ¢ vanishes.

What does the classical vortex solution with n =1 look like? It is the
lowest energy configuration with n=1, so ¢ has one zero - more zeros
would cost more energy - which we may choose to lie at the origin. Since
¢ =0 is not the minimum of the potential V(|¢|), there is a lump of
energy density surrounding the origin. What can we say about the size
and mass of this lump? We can easily determine the size and mass in
order of magnitude without doing any detailed calculations.

Our vortex actually has two characteristic length scales. The first is
the radius of the region in which ¢(r, 6) departs significantly from its
vacuum value |¢|=v/+2; call it rs. The other length scale is the radius
of the region in which the gauge field is far from its asymptotic value,
eq. (1.1.7); call it ry. To find rs and ry for the vortex solution, we do a
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variational calculation; we work out how the energy of the configuration
depends on rg and ry, and then minimize it with respect to rs and ry.
In the order of magnitude, the three terms of eq. (1.1.3) become

E = 7v* [%-& 0(ry—rs) ln(rv/rs)-{—/\vzré]. (1.1.9)
e“vry
The first term is the magnetic self-energy. It favors a large value of ry,
because the magnetic flux does not like to be confined to a small region.
The third term is the scalar potential energy. It favors a small value of
rs, because it costs potential energy when ¢ departs from its vacuum
value. The second term, the gradient energy, ties together the two distance
scales rg and ry.
The energy is minimized by

=(A0)'=ms,  r=(er)=mi, (1.1.10)

for ms> my; the scalar field and vector field “core sizes” correspond
semiclassically to the Compton wavelength of the scalar and vector
particles respectively. The minimum energy, the mass of the vortex, is

Mvortex = 771-)2 ln(ms/ mV)a (1.1.11)

for mg> my.

The classical description we have given of the structure of the vortex
should be appropriate for small #. Of course, small # means weak
coupling; the semiclassical expansion is an expansion in e’h and A%
with the masses my and mg fixed. Comparing eq. (1.1.10) and eq. (1.1.11),
we see that in the classical (weak-coupling) limit, the vortex size becomes
arbitrarily large compared to its Compton wavelength, a property we
expect of an object amenable to a classical analysis.

In the Abelian Higgs model in three spatial dimensions, our time-
independent vortex solution may be thought of as a cross section of an
infinite “string”, and eq. (1.1.11) may be interpreted as the energy per
unit length of the string.

1.2. A Z, vortex

Vortex solutions can occur not only in Abelian gauge theories, but also
in theories with simple or semi-simple gauge groups. Let us familiarize
ourselves with this phenomenon by considering a simple example.

We consider a model with gauge group SO(3), spontaneously broken
by the expectation value of an order parameter in the symmetric tensor

Tan
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(five-dimensional) representation of SO(3). The order parameter ¢ can
be written as a traceless 3 X 3 matrix, which under a gauge transformation
0(x)e SO(3), transforms as

@ (x) > 2(x)P(x)27(x). (1.2.1)
Suppose that @ acquires the expectation value
(D)= P,=(v) diag(1, 1, -2), (1.2.2)

where v is the mass scale of the symmetry breakdown, and diag denotes
a diagonal matrix with the indicated eigenvalues.

The order parameter @, leaves unbroken a subgroup of SO(3) which
is locally isomorphic to (has the same Lie algebra as) SO(2), the group
of rotations about the z axis, generated by

0 -1 0
Q=i 0 0} (1.2.3)
0 0 O '

But to investigate whether this model has a vortex solution, we need to
know more than just the local structure of the unbroken group; we need
to know its global structure. We must not fail to notice that the unbroken
group contains a disconnected component generated by

0,=diag(1, -1, —-1), (1.2.4)

a 180° rotation about the x-axis. The actual pattern of symmetry break-
down is

SO(3) > 0(2). (1.2.5)

In the Abelian Higgs model there are many vacua, distinguished by
the phase of the scalar field. In this model also, there are many vacua,
which can be represented by 2&027!, where 2 € SO(3). The space of
possible vacua, the quotient space SO(3)/0(2), is equivalent to the space
of unit vectors in three-dimensional space, except that a vector pointing
up cannot be distinguished from a vector pointing down. Itis a two-sphere
with antipodal points identified.

In the Abelian Higgs model, we demonstrated the existence of a vortex
by finding a finite-energy field configuration that cannot be smoothly
deformed to the vacuum solution. And we found such a configuration
by exploiting the existence of loops in the space of vacua that cannot
be contracted to a point. By the same reasoning, this SO(3) model will
have a vortex solution if there is a loop in the manifold of vacua that




244 J. Preskill

Fig. 2. A noncontractible closed path in S0(3)/0(2).

cannot be contracted to a point. Such a loop obviously exists. It can be
represented as a path on the two-sphere from the south pole to the north
pole (fig. 2). This is not a closed loop on the two-sphere, but is closed
on the two-sphere with antipodal points identified. The behavior of the
scalar field @ in the vortex solution on the circle r =0 is indicated in
fig. 3. The orientation of @ is represented by an arrow, with the under-
standing that arrows pointing in opposite directions represent identical
orientations.

Fig. 3. The Z, vortex.

The noncontractible loops in the vacuum manifold of our SO(3) model
differ in an important way from the noncontractible.loops of the Abelian
Higgs model. If we compose two such loops by tracing the two loops in
succession, the result is represented by a closed loop on the two-sphere,
which obviously can be contracted to a point. Thus, a configuration with
two vortices can be smoothly deformed to a vacuum configuration. Rather
then being an arbitrary integer, the conserved vortex number takes values
inZ,.
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Does this vortex carry any magnetic flux? In order for the gradient
energy to be finite, the gauge field at spatial infinity must be the pure gauge

1 |
A== (0,007, (1.2.6)

where 2(0) is a gauge transformation which describes how the order
parameter is transported as we traverse the circle at infinity; that is

D(r, ) —> 2(0)D02(0) . (1.2.7)
By integrating eq. (1.2.6), we find that

.Q(G=2w)=[Pexp(ie§A“ dx“)]ﬂ(0=0), (1.2.8)

where P denotes path ordering. If @ is a Z,-vortex configuration, then
£2(0) is a path in SO(3) from the connected component to the discon-
nected component of the unbroken group O(2), and Pexp(ie § A, dx*)
must be an element of the disconnected component of O(2). This observa-
tion allows us to assign a Z, magnetic charge to the vortex.

This Z, vortex has a remarkable property which we will return to
several times later in these lectures. If Q is the generator of SO(2) and
{), is in the disconnected component of O(2), then

2,005 =-Q; | (1.2.9)

in other words, a 180° rotation about the x-axis followed by a counter-
clockwise rotation about the z-axis and another 180° rotation about the
x-axis is equivalent to a clockwise rotation about the z-axis. Equation
(1.2.9) tells us that the sign of the “electric charge” Q has no gauge-
invariant meaning; charge conjugation is a gauge transformation. Fur-
thermore, an object which is transported all the way around the string
experiences a gauge transformation by (2,. Our Z, vortex might be called
an “Alice vortex” (or Alice string, in three dimensions); a voyage around
the string is a voyage through the charge conjugation looking-glass,
interchanging matter and antimatter [2]. '

There can be no Alice strings in Nature. Charge conjugation is not an
exact symmetry, so it cannot be a gauge symmetry. But it is at least
conceivable that there is an exact discrete symmetry in Nature that
interchanges ordinary matter with “shadow matter”, which transforms
under a mirror image of the standard SU(3) x SU(2) x U(1) gauge group.
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Then one might be able, by circumnavigating an Alice string, to become
the Invisible Man.

Incidentally, it is not correct, in general, to assert that, when vortices
are classified by Z,, a vortex is indistinguishable from an antivortex.
While it is true that a pair of vortices, for example, can be smoothly
deformed to a vortex-antivortex pair, there may be an energy barrier
separating the two configurations that allows them to be unambiguously
distinguished. It is therefore possible that, say, the long-range interaction
between vortices is different than the vortex-antivortex interaction [3].

1.3. Topological classification of vortices

Which gauge theories, in general, contain vortices as classical solutions?
We have seen that a vortex can be constructed whenever there are loops
in the manifold of vacua of the theory that cannot be contracted to a
point. So we wish to establish the general conditions under which such
noncontractible loops exist [4].

For a theory in which the gauge symmetry G is spontaneously broken
to a subgroup H, the vacuum manifold, the space of possible orientations
of the order parameter is '

G/H={®, =00, 2¢c G}. (1.3.1)

Here @, is a standard reference position of the order parameter, which
is preserved by the unbroken subgroup H. I have made the assumption
that there is no “accidental” degeneracy: all vacua can be obtained from
any given one by performing gauge transformations in G.

A closed loop in the space G/ H, which we may choose to begin and
end at the point @,, can be parametrized by

d(6)=02(0)P,, 0=<6=<2m, (1.3.2)
where
2(6=0)=1, Q(6=2m)=heH. (1.3.3)

Thus, the loop in G/ H may be associated with a path in G that begins
at the identity and ends at some element of H. This path, of course, is
in the identity component of G, which by definition consists of those
elements of G that can be connected to the identity by a continuous path.

In general, the identity component of G may contain several discon-
nected components of the subgroup H. Therefore, we may distinguish
two possibilities. The endpoint h of the path (2(6) is either in the identity
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O

Fig. 4. A path in G associated with a noncontractible loop in G/ H.

component of H, or it is not. Suppose h is not in the identity component
of H. (See fig. 4.) Then the path @(8) surely cannot be contracted to a
point in G/ H. For ¢(6) can be contracted to a point in G/H only if
£2(6) can be deformed to a path contained entirely in H such that all
intermediate paths both begin and end in H. But that is impossible, if
£2(6) is a path from the identity component of H to another connected
component of H.

On the other hand, if the endpoint h of the path £2(6) is in the identity
component of H, then one readily sees that the loop @(8) in G/ H can
be contracted to a point, assuming that G is simply connected. (See fig.
5.) We say that G is simply connected if all loops in G are contractible.
If £2(6) both begins and ends in the identity component of H, then we
can add a segment contained entirely in H to construct a closed loop in
G. The extra segment does not modify the path ®(6) in G/ H. But this
loop is contractible to a point, if G is simply connected, and therefore
the path @(9) is also contractible.

In general, the closed paths in a space that begin and end at an
arbitrarily chosen reference point fall into topological equivalence

G

()
O,

Fig. 5. A path in G associated with a contractible loop in G/ H.
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classes, called “homotopy” classes. Two paths are in the same class if
they can be continuously deformed into one another. The classes are
endowed with a natural group structure, since the composition of two
paths may be defined to be a path that traces the two paths in succession.
This group is called m,, the first homotopy group of the space. It is
evident from the above discussion that, if G is simply connected, the
topologically distinct classes of loops in G/H are in one-to-one corre-
spondence with the distinct connected components of H contained in
the identity component of G. In an equation, this result is

W;(G/H)=7TO(H)/‘7TO(G): (1-3-4)

which holds when G is simply connected. (Here wo( H)/ 7o(G) is a group
whose elements are the connected components of H in the identity
component of G, and the equality signifies a group isomorphism.)

There is really no loss of generality in assuming that G is simply
connected; we may always regard G as a covering group which is not
necessarily represented faithfully by the order parameter &. But it is
frequently more convenient, as in the Abelian Higgs model, to choose
G not to be simply connected. If G is not simply connected, there may
be additional elements of #,(G/H), additional noncontractible loops,
besides those corresponding to the elements of mwo(H)/m(G). These
additional noncontractible loops in G/H are associated with closed
paths 2(0) in G which are noncontractible in G. But it is also required
that 2(6) not be deformable in G to a path contained entirely in H;
otherwise the path @(6)=0(8)®P, could evidently be contracted to a
point in G/ H.

For example, in the section 1.2, we considered the symmetry breaking
pattern G =S0(3)-> H =0(2), and we identified a class of noncontract-
ible loops in G/ H associated with the nontrivial connected component
of O(2). There are also noncontractible loops in SO(3), which is not
simply connected. However, there are no associated noncontractible
loops in G/ H, because a noncontractible loop in SO(3) can be deformed
to a loop contained in SO(2).

You can check your understanding of this formalism by doing the
following exercises.

Exercise. Consider the quotiént space:

SU(2); xSU(2),xU(1)y
U(1)o ’

MPI =
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where the unbroken U(1), subgroup is generated by
Q=pT{P+qTP+rY.

Here p, g, and r are integers with no common factor, and T, Y are
normalized so that their smallest nonzero eigenvalue is unity. Show that

m(MP)=1Z,.

Exercise. Show that the standard Weinberg-Salam-Glashow SU(2) x
U(1) model has no topological stable string solution.

1.4. Walls bounded by strings

Discrete symmetries are frequently invoked in models of particle physics.
For example, in extensions of the standard model, discrete symmetries
are sometimes used to constrain the Yukawa couplings; one can thus
obtain relations among the masses and mixing angles of quarks and
leptons, even though the discrete symmetries are spontaneously broken
at the weak-interaction mass scale by the expectation values of the scalars.
For such purposes, discrete symmetries are preferable to continuous
symmetries, because continuous global symmetries that get spon-
taneously broken at the weak-interaction scale are not phenomenologi-
cally acceptable. There would be Goldstone bosons associated with such
symmetries that could be detected experimentally.

However, there is a problem with spontaneously broken discrete sym-
metries too, concerning not particle phenomenology but cosmology. If
a discrete symmetry is spontaneously broken, it is expected that the
symmetry is restored at sufficiently high temperature, and that a phase
transition therefore occurred in the early universe when the symmetry
breaking first turned on. In such a phase transition, domain walls would
have been produced. Eventually the energy density of the universe would
have become dominated by these walls; at that point, a reasonable
cosmology could no longer be recovered [5].

One way to deal with this cosmological domain wall problem is to
invoke inflation [6]. We can construct a model with spontaneously broken
discrete symmetries in such a way that the universe enters an epoch of
superluminal expansion after domain walls are produced, and the walls
are “inflated away”. This option is not very attractive if the symmetry
breaking scale is as low as the weak-interaction scale. It is hard to concoct
a reasonable scenario for inflation at such low temperature consistent
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with various constraints, like the baryon abundance of the universe. In
this and the next section, we will see that there is another way to live
with discrete symmetries. Spontaneously broken discrete symmetries can
be cosmologically acceptable if they are embedded in (gauge or global)
continuous symmetries that are spontaneously broken at a higher mass
scale. (Spontaneously broken global symmetries are okay if the symmetry
breaking scale is high enough, because the associated Goldstone bosons
are then very weakly coupled.) It is then possible for a domain wall to
terminate on a string [7]. The properties of these walls bounded by strings
will be considered in this section, and their cosmological implications
discussed in section 1.6.

First, consider a simple example of a model with a domain wall as a
classical solution. It is a theory of ‘a real scalar field ¢ with Lagrange
density

L=3"¢)*-V(¢), (1.4.1)
where the potential V(¢) has the Z, symmetry ¢ - —¢, is minimized at

¢ = v, and satisfies V(0)=0, V(v)=—A* (fig. 6). By a trivial rescaling

L= (ﬁ—z) [30,8)*—-m*V($)], m>=A%/v?, (1.4.2)

where ¢ is dimensionless, and V is a dimensionless function that is of
order one when ¢ is of order one, minimized at d; =+1. The discrete Z,
symmetry is evidently spontaneously broken, and the mass of the scalar
particle is of order m.

=

Fig. 6. A potential with a spontaneously broken Z, symmetry.

— K ¥2A
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Field configurations with finite energy per unit area (in the y-z plane)
must satisfy

{5;____} 1. , (1.4.3)

Among such configurations, those for which

£+E lim 5:-—(5_5——]1111 (‘5, (1.4.4)

are topologically nontrivial; they cannot be smoothly deformed to the
vacuum configuration d; =1, while the energy per area remains finite.
The domain wall is the configuration (independent of ¢, y, z) in the
topologically nontrivial sector that minimizes the energy per unit area.
A simple variational estimate, similar to that performed earlier for the
string, shows that the domain wall has, in order of magnitude, thickness

b~m™, (1.4.5)
and energy per area

o~ A*Db.. (1.4.6)
Exercise. Show this.

Now, as an example of a model with a domain wall bounded by a
string, suppose that the model of section 1.2 is modified so as to undergo
a second symmetry breakdown:

SO(3) - 0(2) > SO(2), (1.4.7)

with v, < v,;. The second stage of symmetry breakdown can be driven by
the expectation value of an SO(3) triplet scalar field ¢; the triplet has a
component that is an SO(2) singlet, but changes sign under the discrete
O(2) reflection. In the gauge in which the quintuplet @ has vacuum
expectation value eq. (1.2.2), ¢ has the expectation value

()= o= 1,(0,0,1). (1.4.8)

From the point of view of an “effective field theory” that describes
physics well below the symmetry breaking scale v,, the expectation value
of ¢ breaks an exact discrete symmetry, so there must be a domain wall
configuration. (That the discrete symmetry actually anticommutes with
SO(2) is irrelevant in this discussion.) But we know that this discrete
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symmetry is really contained in the underlying gauge symtetry SO(3)
that became spontaneously broken at mass scale v,.

To appreciate the implications of this property, consider how the field
¢ behaves in the vicinity of the string discussed in section 1.2. A long
distance away from the string, the fields @ and ¢ must approach a
vacuum configuration. In the vacuum, @ and ¢ are aligned in order to
preserve the same SO(2) subgroup of SO(3). We have seen that, as a
function of the polar angle 6 about the string, ¢ winds through the
topologically nontrivial loop

D(0)=02(0)P,02(0)", 2(0+27)=02,02(6=0), _ (1.4.9)

where {2, is an O(2) reflection. To remain properly aligned with @, ¢
must follow the path

d(0)=10(6) ;. (1.4.10)

But the reflection (2, changes the sign of ¢,; therefore ¢(6) given by eq.
(1.4.10) changes sign as it winds around the string. In order to be
single-valued, ¢ must, on some surface bounded by the string, pass
through a domain wall and change sign. We conclude that the string is
the boundary of a domain wall [7].

In other words, if the field ¢ wants to smoothly interpolate between
the vacuum values ¢, and 2,¢,, it has two options. It can pass through
a domain wall that carries energy per unit area o, or it can wind around
a string that carries energy per unit length u ~ v3. By winding around
the string, ¢ can avoid the domain wall. It is pretty obvious that this
feature is generic for models in which a spontaneously broken discrete
symmetry is embedded in a continuous symmetry that is spontaneously
broken at a larger mass scale.

Exercise. Prove this, using the topological classification of vortices
described in section 1.3.

If it is possible for a domain wall to terminate on a string, then a sheet
of domain wall is not absolutely stable. A hole, bounded by string, can
spontaneously nucleate in the sheet. If the hole is larger than R~ u /0,
where u is the string tension and o is the wall tension, then the wall
tension overcomes the string tension and the hole expands catastrophi-
cally. The energy of the hole of critical size is E.~ n?/o; thus, a WKB -
estimate of the nucleation rate per unit time and area gives, in order of
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magnitude
Foce ™77, (1.4.11)

If v,<v,, this rate is completely negligible, and the domain wall may
be regarded as stable for all practical purposes.

We have now seen how domain walls bounded by strings arise if a
spontaneously broken discrete symmetry is embedded in an exact con-
tinuous symmetry. But walls bounded by strings can also arise in another,
somewhat different, way; the spontaneously broken discrete symmetry
may be embedded in a continuous symmetry that is approximate rather
than exact [8]. Walls bounded by strings of this second type arise in
models with axions. ’

Of course, gauge symmetries are necessarily exact, so the continuous
symmetry associated with the string must in this case be a global sym-
metry. The string arising from a spontaneously broken global U(1)
symmetry is the my-0 limit of the Nielsen-Olesen string studied in
section 1.1. As we observed there, this “global string” has a logarithmi-
cally divergent energy per unit length. It is not necessarily foolish to
think about such strings, though. A finite closed loop of global string
has finite energy, and a network of global strings has finite energy per
unit volume, with logarithmic interactions among the strings. A network
of global strings could have been produced in the early universe.

In an axion model [9] there is a scalar field ¢ that transforms under
a global U(1) symmetry, the Peccei-Quinn (PQ) symmetry, under which
quarks also transform. Acting on quarks, the PQ symmetry is chiral -
left-handed and right-handed quarks have different charges - so the PQ
current is afflicted by a chiral anomaly. Physics is left invariant by a
U(1)pq rotation only if the rotation is accompanied by a simultaneous
rotation of the QCD angle ,

dp->ep, 0->0+27Na, (1.4.12)

where N is an integer that depends on the PQ charges of the quarks
(and of other colored fermions, if any).

Nonperturbative strong-interaction effects depend on 6, and therefore
explicitly break the PQ symmetry. But 8 is a periodic variable defined
modulo 2, and therefore a PQ rotation (1.4.12) with & an integer multiple
of 27/ N is a good symmetry. A Z, subgroup of the U(1)pq symmetry
remains unbroken in spite of the nonperturbative effects [10].

The scalar ¢ acquires a large vacuum expectation value

(p)y=ve", (1.4.13)
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Fig. 7. Vacuum energy density in an N =4 axion model.

that breaks spontaneously the U(1)pq symmetry. Because of the nonper-
turbative QCD effects, the vacuum energy depends on the phase a.
Indeed, this dependence is the whole motivation for constructing an
axion model. The true vacuum chooses a so that §=0, because this
choice minimizes the nonperturbative contrlbutlon to the vacuum energy.
We are thus able to understand why the parameter # is observed to be
very small in nature.

The vacuum energy density as a function of « is sketched in fig. 7. It
has a height of order A®, where A~ 100 MeV is a characteristic strong-
interaction scale. (Actually, the height of this potential depends on the
light quark masses, but we may ignore this effect in the present dis-
cussion.) The particle arising from the oscillations in this potential is the
axion, with mass m,~ NA?/v. It is the pseudo-Goldstone boson of the
spontaneously broken U(1)pq symmetry, which has acquired its mass
from the explicit symmetry breaking [11].

Associated with the breakdown of the U(1)pq symmetry at mass scale
v is a global string. As a function of polar angle around the string, the
phase a of the scalar field ¢ varies from 0 to 2. But sufficiently far
from the string, it is energetically favorable for & to assume one of its
vacuum values, a multiple of 27/ N. Therefore, the change in « by 27
collapses to N domain walls, each with a thickness of order m, ! and
an energy per area o~ A*/m,. The N domain walls meet at the string
(fig. 8).

From the point of view of early cosmology, domain walls bounded by
strings still cause trouble if more than one wall ends on each string.
Barring the possibility of inflating the walls away, an axion model is
cosmologically acceptable only if exactly one wall ends on each string.
Models with this property can be constructed in two ways. The first way
is to add new colored fermions to the model with appropriate PQ charges
so that N =1[12]. The second way is to embed the discrete Z symmetry
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Fig. 8. Cross section of an axion string, at which N =4 domain walls meet.

in an exact (local or global) continuous symmetry group [13]. T will
describe how the second strategy works.

The idea is that the field ¢ whose expectation value breaks the U(1)pq
symmetry also transforms under an exact continuous symmetry group G
and that U(1)pq and the identity component of G intersect at the discrete
Zn subgroup. Therefore there is a minimal “hybrid” string associated
with a closed path in the vacuum manifold that winds only (1/ N)th of
the way around the PQ U(1), and returns to its starting point through
G. This path can be expressed as

¢(0)=exp(—i6/N)2s(0)dy, 0=<0<2, (1.4.14)
where £5(0) is a path in G that begins at the identity and ends at e*™/ ",
it is represented schematically in fig. 9. The minimal string is the boundary
of only one axion domain wall, because the phase of ¢ advances by only
27/ N through U(1)pq as a function of 6.

minimal

loop

Fig. 9. The minimal noncontractible loop associated with the hybrid axion string.
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It is enlightening to consider a specific example of a model of this
type [13]. For this purpose, consider a grand unified model with gauge
group SO(10) and one generation of fermions in the representation 16g.
Let us choose the minimal Higgs structure that permits the SO(10)
symmetry to break to SU(3).o10r X U(1)em; the Higgs fields are in the
representations 16y, 10y, and 45y of SO(10). We specify the U(1)pq
charges of the fields to be

Qi =1, Qs =1, Qioy =2, Qas, = —4. (1.4.15)

These choices are sensible because, first, the Yukawa coupling
16 16 104 is allowed, and, second, a quartic Higgs potential can be
constructed that has the U(1)pq symmetry but no other U(1) symmetries.
(Additional U(1) symmetries might cause trouble, because there would
be an exact Goldstone boson, and the symmetry breaking scale associated
with the axion might turn out to be lower than desired.)

The fermion representation 16y contains the quark fields u;, d;, ug,

r, and the U(1)pq rotation (16g) > ¢'*(16¢) is an axial rotation; it rotates
left-handed and right-handed quarks by opposite phases. But the U(1)pq
rotation by a = 7/2 preserves the argument of the determinant of the
quark mass matrix, and is an exact symmetry of QCD. Therefore there
is an exact Z, subgroup of the approximate U(1)pq symmetry group. The
action of the generator of this Z, group on fields with the U(1)pq charges
given in eq. (1.4.15) is

16116, 10~ -10, 45 45. (1.4.16)

Furthermore, the covering group Spin(10) of SO(10) has center Z,, and
the action of the generator of the center on Spin(10) representations is
precisely that prescribed in eq. (1.4.16). Therefore, the exact Z, subgroup
of U(1)pq is actually contained in the gauge group G = Spin(10). This
model satisfies the criterion of our earlier discussion; the minimal string
is associated with a closed path in the vacuum manifold that winds only
one quarter of the way around U(1)pq, and returns to its starting point
through Spin(10). This string is the boundary of a single axion domain
wall.

This model contains only a single generation of fermions, but now
that we understand the idea it is not too hard to concoct analogous
models with more generations. It is also possible to construct “familon”
models in which the exact symmetry G is a global family symmetry,
rather than a gauge symmetry [14].
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1.5. Superconducting strings

We admired the peculiar properties of the “Alice” string. Now we will
consider other examples of strings with exotic properties. These strings
support massless excitations that propagate along the string [15].

Inside a string, a scalar field is excited; it assumes a value different
than its value in the vacuum. It may happen that a fermion is Yukawa
coupled to this scalar. Then the fermion will interact with the string. Let
us study further the nature of this interaction.

We will treat the string as a classical background field, and consider
propagation of fermions in the string background. For definiteness,
suppose that @ is a complex scalar field whose expectation value breaks
a global U(1) symmetry. (It does not complicate things very much to
introduce a gauge field, but we will not, to keep things as simple as
possible. Thus our string is a global string, like the axion string.) A string
along the z-axis is a scalar field configuration

@D(r, 6, z) #f(r) e'’, (1.5.1)

where f(0)=0. Here r, 6, z are cylindrical coordinates.
The coupling of a four-component fermion to the string is described
by a Lagrange density -

L= (;Lia Yt J’-Ria Yr— J/-L‘Z’R(p - JR‘/’L@*; (1.5.2)

where g ;. denote eigenstates of ys =1iy,7y; v,y with eigenvalues +1, —1.
The Yukawa coupling has been absorbed by properly normalizing the
scalar field @. Thus f(r =0) is m, the fermion mass in the vacuum. The
Dirac equation derived from this Lagrange density is

lalllL”—' ¢¢Ra 13¢R= ¢*¢'L‘ . (1.5.3)

We will try to find a zero-energy, or time-independent, solution.
If we assume that ¢ is a function of r only, the Dirac equation becomes

] . 0 ;
iy,(cos 6~ Y172 sin 0) —yr=f(r)e 6¢’Ra
or ( 4)
1.5.

. N .
iy1(cos 6 — y,y, sin ) ™ Yr=rf(r) e .

It can be solved if

iy1v20L= Y, 1Y172r=—UR, (1.5.5)




258 J. Preskill

in which case we have
. d . d
iy = =f(r)yr, ivyi —Yr=Sf(r)¢. (1.5.6)
dr dr
Now egs. (1.5.6) and (1.5.5) are solved by

*ﬂ?,(f):"?exp[—J. f(r’)dr'], Y(r) =—iy i, (1.5.7)

where 7 is a constant spinor satisfying
—Ysn==iny2n =17 (1.5.8)

We have obtained a zero-energy solution that, in two dimensions, is
normalizable, since f(r =c0) = m > 0. Furthermore, the solution has two-
dimensional chirality, in the sense that ll’?.,a are eigenstates of iy,7y,, the
two-dimensional (Euclidean) analog of vs.

One can show explicitly that this chiral, normalizable zero-energy
fermion mode survives if we now introduce a U(1) gauge field. In fact,
the existence of a chiral zero mode follows from an index theorem, which
states that the number of such zero modes is generically the winding
number of the vortex [16].

In two spatial dimensions, there is a bound state of the fermion and
vortex, because the fermion has zero energy when localized on the vortex,
and mass m when far away from the vortex. In three spatial dimensions,
there is again a fermion mode bound to the string, but the fermion is
free to propagate along the string. We can construct a fermion wavepacket
localized on the string and consider how it propagates along the string.
For a fermion mode of the form

l//L:a(za t)'ﬁl’g(r): !//Rz_i‘)'ltpLa (15‘9)
the Dirac equation becomes
(700" + ¥30*) a(z, t)n =0. (1.5.10)

It follows from the properties eq. (1.5.8) of 7 that y,ysm =1, so, eq.
(1.5.10) has the general solution

a(z, t)=a(z—t). (1.5.11)

As a consequence of the chirality of the zero-energy solution ¢°, propaga-
tion of the fermion along the string is also chiral. The massless fermion
bound to the string is a “right-mover”; it and its antiparticle propagate
at the speed of light in the positive z-direction only.
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We see that the low-energy excitations propagating along the string,
those with wavelengths large compared to the thickness of the string,
may be described by an effective (1+1)-dimensional field theory of chiral
fermions. (By a *‘chiral fermion” in (1+1) dimensions we mean a state
which propagates only to the right or only to the left. Chirality has
nothing to do with helicity; there is no spin in one spatial dimension.)
If we consider the antivortex @ = f(r) e instead of a vortex, then the
massless fermions propagating along the string are left-movers instead
of right-movers. That conclusion is obvious: a string along the z-axis
becomes an antistring if I rotate it by 180° about the x-axis, and the
rotation changes the direction of propagation of the zero modes. The
chirality of the fermions would also be reversed if J g were Yukawa
coupled to @* instead of @. All fermions that acquire mass through a
Yukawa coupling to @ are right-movers along the string, and all fermions
that acquire mass through a Yukawa coupling to @* are left-movers
along the string.

Now, to understand at last why the word “superconducting” appears
in the title of this section, let us imagine that our fermions carry non-
vanishing charges under both the U(1)y gauge group, which is spon-
taneously broken by the expectation value of @, and also another,
unbroken, electromagnetic gauge group U(1),. Let us ask what happens
if an electric field in the positive z-direction is applied along a string
that is initially in its fermionic ground state. In the ground state, the
Dirac sea is filled for each of the fermion modes. But constant electric
field of strength E applied for a time ¢ will increase the Fermi level for
each right-mover, and decrease the Fermi level for each left-mover by
an amount

Pp= geEt, (1.5.12)

where g is the charge of the fermion in units of e. Thus the Dirac vacuum
is not preserved by the applied electric field; fermions or antifermions
are created (fig. 10). From the one-dimensional density of states dp/2,
we infer that the number per unit length of right-moving fermions or
left-moving antifermions produced is geEt/2a, and that the total electric
charge density p on the string changes at the rate

dp 5 2) e’E

—= - —_ 1.5.13

Y (ra-3a) o (1513)
if the contributions of all right-moving and left-moving fermion modes
are summed. We find that the electric charge on the string is not conserved
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E E
R L L ,
Fig. 10. Right-moving fermions and left-moving holes are created when an electric field
is applied along a string.

o T

unless

§ q§=§ qi. (1.5.14)

We have encountered the well-known chiral anomaly, which renders
inconsistent a two-dimensional gauge theory in which eq. (1.5.14) is not
satisfied.

In fact, though, this anomaly does not occur in our effective two-
dimensional field theory if the four-dimensional theory we started with
is itself anomaly free. The scalar field @ has a U(1)y charge, which we
may normalize to one, and vanishing U(1), charge. There will be a
right-moving fermion mode on the string if ¢ ¢x is Yukawa coupled to
&®. Such a coupling is invariant under U(1), X U(1)y if ¢y and ¢ have
charge assignments

Ui q,y Yri g, y—1. (1.5.15)

The pair of fermions ¢y , ¢y therefore make a contribution proportional
to g to the QQY triangle anomaly in four dimensions. There will be a
left-moving fermion mode on the string if ¢ Y couples to @*, in which
case the allowed charge assignments are

Ui q, y, Yri g, y+1, (1.5.16)

and the pair ¢, , Yyr make a contribution proportional to —gq” to the QQY
anomaly. Thus, the condition for cancellation of QQY anomalies in the
four-dimensional theory becomes precisely eq. (1.5.14) in the effective
two-dimensional theory.
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You might wonder about the case of the axion string. If U(1)y is the
Peccei-Quinn symmetry, then there is a QQY anomaly in the four-
dimensional theory, and electric charge is not conserved in the effective
two-dimensional theory. Apparently, electric charge can flow onto and
off the string. This observation seems puzzling at first, because low-energy
fermions are firmly bound to the string; they cannot leave it without
acquiring large masses. But the paradox is resolved when we recall that
axion strings are necessarily the boundaries of domain walls. The domain
walls also have normalizable zero-energy nodes, and electric charge can
flow from wall to string and back again [17].

Anyway, let us suppose that both U(1), and U(1)y are gauged in the
four-dimensional theory, and that both are free of anomalies, so that the
effective two-dimensional theory is also anomaly free. Then the right-
movers and left-movers make equal and opposite contributions to the
rate of change of the charge density p on the string. But they make
contributions of the same sign to the rate of change of the electric current
J flowing on the string. After a constant field E has been applied for a
time ¢, the current flows in the same direction as the applied field and
has magnitude

2

J= (z 2tS qg) ¢E, (15.17)
R L 2w

The signal that the string behaves like a superconducting wire is that it

is dJ/d¢, rather than J, which is proportional to the applied field E. If

the electric field is turned off, the current persists indefinitely.

The supercurrent eventually saturates. When the fermions have an
energy comparable to their mass m, they are no longer bound to the
string. Thus, the maximum current due to a single fermion mode is
roughly J,.., = gem/2x. If m is the electron mass and g =1, this current
is about 20 A,

We can easily imagine a grand unified theory in which there are
superheavy charged fermions which acquire their mass from the expecta-
tion value of a certain scalar field. If the theory has a string solution for
which that scalar field has a nontrivial winding number, then the super-
heavy fermions have zero-energy modes confined to the string. The
current does not saturate until it is truly enormous, if the fermion masses
are very large. Furthermore, Nature provides a convenient mechanism
for driving the current; such a string crossing the magnetic field lines
of our galaxy would be subject to an effective electric field along the
string. If such strings exist, and are produced in the early universe, then
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we might not have to build the SSC. There would not be fermion-
antifermion annihilations, because fermions and their antiparticles move
in the same direction along the string. But there would be hard-scattering
events between right-movers and left-movers that could produce lots of
stuff. We would still need to build detectors, but the accelerator would
be provided for free.

It is also fun to contemplate a string such that the electroweak Higgs
doublet H has a'nontrivial winding number. The light fermions, ordinary
quarks and leptons, acquire their masses from the expectation value of
H. Therefore, a light fermion supercurrent would flow along this string.

For each generation of quarks and leptons, the up quark u and its anti-
quark @ get mass from a Yukawa coupling to H, while the down quark
d, its antiquark d, and the charged leptons e*, e~ get mass from the
charge conjugate scalar H®. Thus, the fermions in the effective two-
dimensional theory describing propagation along the string are

right-movers: u, i,  left-movers: d, d, e*, e - (1.5.18)

When an electric field is applied along the string, each fermion species
is produced at a rate proportional to its electric charge. Recalling the
three-fold color degeneracy of the quarks, we see that the fermions
created on the string have the quantum numbers

uude™, (1.5.19)

the same quantum numbers as a hydrogen atom. Predictably, no electric
charge or B— L are produced; these are good anomaly-free symmetries
of the standard electroweak model. However, baryon number is not
conserved, reflecting the BQY anomaly of the standard model, where
Y is weak hypercharge. An electroweak string carries a weak hypercharge
magnetic flux. When an electric field is applied along the string, there is
a nonzero Eg- By, which can act as a source of baryon number, as
’t Hooft pointed out long ago. When the Fermi level in the string has
reached a few hundred MeV, hadrons that have been produced are able
to leave the string. This string is thus able to convert the energy stored
in the galactic magnetic field into matter.

Are there realistic grand unified theories that exhibit the phenomena
we have been talking about? I will describe just one example, which
nicely illustrates the possibilities.

The example is an E¢ model [15]. Let us suppose that Eg is first broken
down to SO(10) x U(1) by, say, a Higgs field in the 78 representation,
and that the U(1) symmetry is subsequently broken at a lower mass scale
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by the expectation value of the SO(10) singlet contained in a Higgs
transforming as a 27 representation:

E 0). S,
O SO(10)x U(1) o SO(10) (1.5.20)

There is a string associated with the breakdown of the U(1) symmetry
at the second stage of symmetry breakdown. (Actually, as we will discuss
later, this string is not really topologically stable. There are also magnetic
monopoles in this theory, and it is possible for the string to break by the
nucleation of a monopole-antimonopole pair. But we may choose the
two symmetry breaking scales to differ by orders of magnitude, and in
that case the probability that the string will break is so small that it can

be safely neglected.)
The only thing we will need to know about Eg is that the 27 representa-

tion of Es decomposes under the SO(10) x U(1) subgroup as
27-1'+10"2+16"4,

It is the 1}; component of the Higgs field 27 that acquires the vev that
breaks the U(1) symmetry, and it is this field which has a nontrivial
winding number in the string solution. Now, fermions in this model are
also in the 27 representation, and fermion masses are generated by an
E¢-invariant Yukawa coupling

27276 27y. (1.5.21)

Decomposed with respect to SO(10)xU(1), this coupling contains a
piece of the form

1052105214, (1.5.22)

Thus, there is a superheavy fermion transforming as 1072 under
SU(10) x U(1) that acquires its mass from the Higgs field 1. This fermion
has a zero mode confined to the string.

Does the string also have light fermion zero modes? The light fermions
are contained in the 16 representations of SO(10), and acquire mass from
a term in (1.5.21) of the form

16141641052, (1.5.23)

which, when decomposed with respect to representations of the SU(5)
subgroup of SO(10) becomes

10£ 105 55+ 10 56 Syy++ - - (1.5.24)
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The electroweak doublet is a linear combination of the doublet contained
in 54 and 5. The u acquires its mass from the expectation value of 5y,
and d and e acquire mass from the expectation value of 5.

Let us consider how the 5y and 5 fields behave in the vicinity of the
string, once their vacuum expectation values turn on. As the 54 or 5y is
transported around the string, it undergoes a U(1) gauge transformation.
This gauge transformation rotates the phase of the 1y Higgs field by 2,
but because the 54 and 5,4 have U(1) charge —3, their phases are rotated
by only —a. In order for these fields to be single-valued, the string must
carry a U(1)y weak hypercharge magnetic flux, so that 54 and 54 also
undergo a U(1)y gauge transformation that rotates their phases by .
And since 55 and 5;; have opposite weak hypercharge, the U(1) y transfor-
mation rotates their phases in opposite directions. Thus, in the actual
string solution, either the 5y or the 54 Higgs field, but not both, will
have a nontrivial winding number; which case is realized depends on
details of the Higgs potential. The up quark u or the down quark d and
charged lepton e are trapped on the string. The low-energy effective
theory describing the fermion modes propagating on the string
contains light fermions and superheavy fermions moving in opposite
directions.

The string, in this case, has a very heavy, compact core associated with
the superheavy scale of symmetry breakdown, surrounded by a much
lighter envelope with a thickness determined by the electroweak scale.
The superheavy fermion current is confined to the core, and the light
fermion current flows in the envelope.

Exercise. 1 mentioned that the strings of the Es model can end on
monopoles. What do you think would happen if a fermion bound to the
string were to encounter a monopole?

So far we have considered string superconductivity due to fermionic
charge carriers, but it is also possible for a bosonic charge carrier to be
confined to a string. This possibility is illustrated by the Alice string of
section 1.2.

When the symmetry breakdown SO(3)- O(2) occurs, the charged
vector boson fields have vanishing expectation values in the vacuum, of
course. But inside the string the heavy vector bosons are excited, and
the fields have non-vanishing expectation values. As a result, the elec-
tromagnetic U(1), symmetry is in effect spontaneously broken inside
the string, and the string behaves like a superconducting wire [18].
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Since the charged fields are excited inside the string, the string is not
invariant under a global U(1), rotation; the strings form a degenerate
set labeled by a charge rotation angle 0. We can introduce a local field
o(z, t) on the string by performing charge rotations that vary as a function
of position along the string. But a global color rotation costs no energy;
therefore o is a massless scalar field on the string. The massless bosonic
excitations that carry the supercurrent are the o excitations.

We saw that when a charged particle circles an Alice string, its charge
changes sign. Electric charge is conserved, so it is natural to wonder
what happened to the charge. We can now understand that the charge
is transferred to the string in the form of a o excitation, and is then
carried away along the string at the speed of light.

To establish that the charged fields are really excited inside the string,
we may argue as follows: We noted earlier that the asymptotic gauge
field at a long distance from the string is a pure gauge. And from the
gauge field on the circle at infinity, we can construct the path-ordered
exponential

P exp(i § A, dx“) =h, (1.5.25)

where h is an element of the component of O(2) not connected to the
identity. Now imagine shrinking the circle at infinity down to a point at
the origin. As the circle shrinks to a point, the path-ordered exponential
must become the identity; otherwise there would be a finite magnetic
flux at a point singularity, which would surely cost infinite energy. Since
it begins in the component of O(2) not connected to the identity, and
ends up at the identity, the path-ordered exponential must take values
in SO(3) which are not in O(2) as the circle shrinks. This means that the
fields coupled to the broken SO(3) generators must take nonvanishing
values inside the core, as we wanted to show.

1.6. Cosmic strings

The strings that appear in spontaneously broken gauge theories have
drawn increasing attention from cosmologists in recent years. The reason
for this interest is that strings might have been produced in a phase
transition in the very early universe, and these “‘cosmic strings™ are the
basis of a quite attractive, though still very speculative, theory of the
formation of galaxies and other large-scale structures in the universe.
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The main idea [19, 20] of the string picture of galaxy formation is that
closed loops of cosmic string served as seeds onto which matter accreted,
which led to the formation of galaxies, clusters of galaxies, and other
structures. Several features of the observed large-scale structure in the
universe lend support to this view.

For one thing, the spatial positions of loops of cosmic strings are not
expected to be randomly distributed; they are correlated, and these
correlations are inherited by the objects seeded by the loops. Furthermore,
as will be explained in more detail below, the distribution of loops of
string should be scale invariant. The correlations among loops with a .
characteristic size of order R, have the same form as the correlation
among loops with size R,, aside from a trivial redefinition of the length
scale. Loops of different size seed features of different mass. We are thus
led to predict, for example, that the two-point correlation function for
galaxies should have roughly the same form as the two-point function
for rich clusters of galaxies, if the unit of length in both cases is chosen
to be the mean separation between the objects being considered [21].
This prediction is confirmed reasonably well by observation, especially
if one allows for an enhancement of the galaxy correlations due to
nonlinear gravitational effects [22]. The traditional view of the origin of
large-scale structure, in which structures evolve from a Gaussian distribu-
tion of small fluctuations in the energy density, has been less successful
in explaining the relation between the correlations of galaxies and the
correlations of clusters.

A related observation is that the virial and peculiar velocities of objects
in the universe, ranging from stars in galaxies to galaxies in superclusters,
are always roughly v~ 107%c, independent of length scale. This scale
independence might be explained by the cosmic string picture, since the
escape velocity from a loop of string is independent of the linear size of
the loop; it is

v~(VGu),

where u is the energy per unit length of the string and G is Newton’s
constant. To obtain v~10">c we require u~ (10'® GeV)®. The mass
10'® GeV is not implausible as a scale of symmetry breakdown in a grand
unified theory.

Attempts to derive detailed predictions concerning the evolution of
large-scale structure from the cosmic string scenario are just beginnning,
and will not be described here. I will briefly describe, though, the basic
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picture of how strings might have been produced in the early universe,
and how they subsequently evolve.

We should note first of all that the proposal that galaxies are seeded
by loops of cosmic string implicitly assumes that no density fluctuations
other than those produced by the strings have an important influence on
large-scale structure. Therefore, the universe must have been
homogeneous to very high accuracy before the strings were produced.
The string scenario therefore requires inflation prior to the production
of strings, or some other means of establishing a very homogeneous
initial state.

Strings arise as a consequence of spontaneous symmetry breakdown.
But we typically expect that spontaneously broken symmetry is restored
at sufficiently high temperature. There is a critical temperature T, compar-
able to the symmetry-breaking mass scale v, and for temperature T above
T., the scalar field @ that acts as an order parameter for the symmetry
breakdown has a vanishing expectation value. In the early universe, T
was initially above T,, but as the universe expanded and cooled, T
eventually fell below T, and a phase transition occurred; the expectation
value of @ turned on, and strings were produced. (Incidentally, it is
essential that the symmetry breakdown induced by the expectation value
of @ not admit magnetic monopoles as well as strings. Otherwise, an
unacceptably large abundance of monopoles would also be produced in
the phase transition, which would radically alter the evolution of the
universe. The cosmic string scenario requires that monopole production
occurs before inflation, while string production occurs after.)

Since the temperature of the universe was very uniform, the phase
transition occurred everywhere at roughly the same time. But when the
expectation value of @ turned on, it chose its orientation in the vacuum
manifold at random. Furthermore, for two regions separated by a distance
greater than ¢, the time since the universe reheated after inflation, the
choices made by @ in the two regions were essentially uncorrelated;
these regions had not communicated since prior to inflation. We may
thus regard @ as having a domain structure soon after the phase transi-
tion, with the characteristic correlation length £, the size of a domain,
satisfying £ <t When the domains coalesce, topological defects are
sometimes frozen in; these are the strings [23].

This process is simulated in fig. 11. Domains are represented by the
sites of a triangular lattice in the plane. Suppose that a U(1) symmetry
is spontaneously broken in the phase transition, giving rise to Nielsen-
Olesen vortices. The order parameter may take any value on the unit
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Fig. 11. A simulation of string production in a cosmological phase transition.

circle, but for purposes of illustration, we divide the circle into three
equal segments, and assign to each domain the value 1, 2, or 3, chosen
randomly. A vortex appears on each triangular plaquette of the lattice
for which the sites of the plaquette take the values 1-2-3 in the clockwise
sense; an antivortex appears if the sites take the values 1-2-3 in the
counterclockwise sense. In this model, 5 of the plaquettes contain vortices
and } contain antivortices, on the average.

Such a simulation can be extended to three-dimensional space, by
filling space with triangular simplices. The plaquettes with vortices can
be joined together, defining a self-avoiding network of strings. Each
string is either infinite in extent, or forms a finite closed loop. The
trajectory of a string is essentially Brownian: the distance the trajectory
travels from its starting points increases like the square root of the length
of the trajectory, on the average. One might expect the trajectories to
deviate from Brownian, because the string network is self-avoiding.
Indeed, a single self-avoiding random walk is not Brownian; the self-
avoiding condition acts like an effective repulsive force that causes the
trajectory to tend to straighten and expand. But in a self-avoiding network
of strings, this repulsion becomes isotropic for trajectories that are
sufficiently long. The self-avoiding condition is as likely to compress a
trajectory as stretch it, and the net result is that sufficiently long trajec-
tories are Brownian [24].

In two dimensions, a random walk always returns to its starting point,
but in three dimensions there is a finite probability that the walk never
returns to its starting point. Thus, in three dimensions, a finite fraction
of order one of the length of string in a self-avoiding network consists
of infinite strings, rather than closed loops [25, 26]. The precise fraction
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depends on the lattice chosen for the simulation, because most of the
length of string in closed loops consists of small loops with a size
comparable to the lattice spacing. But the scaling behavior of the probabil-
ity distribution for large loops is easily found, because a large loop is
well approximated by a random walk. The probability that a three-
dimensional random walk returns to the origin on its kth step is (7k) >/
for k large; this is the familiar “spreading of the wave packet” in the
solution to the diffusion equation. The number density dn of closed loops
with length between I and I+dl is proportional to the probability that
a random walk returns to its origin after traveling a distance between [
and [+dl or

dnecdl/ P2 (1.6.1)

Since the loops are Brownian, a loop of length [ typically fits inside a
sphere of radius R = I'/% Expressing the distribution eq. (1.6.1) in terms
of the radius R of the loop, we have

dnocdR/R*. (1.6.2)

From the dimensional consistency of eq. (1.6.2), we see that the step
length of the walk has dropped out of the relation between n and R.
The distribution of loop sizes does not depend on any intrinsic length
scale; it is scale invariant [25, 27].

Having established some of the statistical properties of the initial
configuration of strings produced in the phase transition, let us now
consider how the string network subsequently evolves. When first formed,
the strings have many kinks and wiggles, and the string tension causes
the wiggles to vibrate. At first, friction due to the surrounding radiation
gas may impede the vibrations, but as the universe expands and the
radiation density decreases, friction quickly becomes negligible, and the
strings are soon moving with velocity of order ¢ [23]. Causality requires
that wiggles with wavelength larger than the “horizon” size ty (where
ty is the Hubble parameter) remain frozen in; they are merely confor-
mally stretched as the universe expands. But as the horizon size rapidly
increases, the wiggles eventually come within the horizon, and begin to
vibrate. As they vibrate, they are reduced in amplitude by the cosmologi-
cal red shift. Thus, the strings tend to straighten out on distance scales
smaller than the horizon, and the step length of the random walk remains
comparable to the Hubble length [27].

As the network vibrates, strings inevitably collide. How the string
network evolves depends crucially on how colliding strings behave. When
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two strings collide they may either pass through each other intact, or
break and rejoin with new partners, a process called intercommuting.
The likelihood that two colliding strings intercommute can be para-
metrized by an intercommuting probability p. It seems reasonable to
expect that p is of order one. In particular, one expects that intercommut-
ing is possible in the classical, or weak-coupling limit. In this limit,
intercommuting is a deterministic process; whether it occurs or not is
determined by initial conditions, the relative velocity of the strings and
the angle at which they cross. There is no reason to expect the phase
space of the initial conditions for which intercommuting occurs to be
small, or for the intercommuting process to be suppressed by -quantum
corrections. Nevertheless, for the purpose of discussing the evolution
of the string network, it is useful to imagine that the intercommuting
probability p is small, so that it is sensible to expand in powers of p.

To begin with, consider the case of noninteracting strings, p=0. We
wish to determine how the contribution to the energy density due to the
infinite strings evolves in this case. The key observation is that the number
of open strings crossing a horizon volume increases with time. To see
this, suppose that the string network initially has a step length so.
Counting only the infinite strings, and ignoring the loops, we may identify
the mean number of pieces of infinite string that cross a cubic cell with
edge length s, call this number m,. Now consider a larger cell, with
side Ns,. How many open strings m cross this cell? The total length of
string inside the cell is N>myqs,, while each string crossing the cell has
a length of order NZsq; thus

m= Nm. (1.6.3)

In order to appreciate the implications of this observation, it is convenient
to introduce a “conformal time” variable 7 such that the space-time
metric can be expressed as

ds®>=a®(7)[d7*—dx?]. (1.6.4)

Conformal time is convenient because the coordinate horizon size
increases linearly with 7. Since features of the string network larger than
the horizon size are conformally stretched, it follows from eq. (1.6.3)
that the number of open strings crossing the horizon volume increases
linearly with 7. ,

To find how the energy density due to open strings evolves, recall that
the persistence length of the string remains comparable to the horizon
size. If the universe is radiation dominated, then a(7) o« 7, and each open
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string crossing a horizon volume contributes wlra(7)]7? to the energy
density, where w is the mass per unit length of the string (ra(7r)=1is
the horizon size). If the number of such open strings increases like 7, we
have

«la(n)]7, (1.6.5)

poppn
string
the same behavior as for nonrelativistic matter; the length of string per
comoving volume is preserved. (The expansion of the universe merely
straightens the strings; it does not create new string by stretching the
network.) Meanwhile, because of the red shift, the energy density due
to radiation decreases like p,,qC a*. If the strings were really noninter-
acting, they would eventually dominate the energy density of the universe
[28].

But if the strings intercommute with probability p, then closed loops
of string can be produced by the intercommutation of open strings, and
the mean number m of open strings crossing a horizon volume eventually
stabilizes. Loops with a size comparable to the Hubble size can be
produced by various means. A single open string might self-intersect and
break off a loop. Since the open strings have a persistence length compar-
able to the Hubble length, and move with velocities of order ¢, roughly
m such self-intersections typically occur in each Hubble volume per
Hubble time. For each self-intersection, the probability is p that a loop
forms, so loops are produced by this mechanism at a rate of order pm
per Hubble volume and Hubble time. A loop can also be produced by
a pair of open strings that intercommute twice; this mechanism produces
Hubble-size loops at a rate of order 3(pm)® per Hubble volume and
Hubble time. Adding the production rates due to interactions of three,
four, and more open strings, one finds that the result exponentiates; a
crude estimate of the rate of loop production for small p is e?™ —1 per
Hubble volume and Hubble time. Meanwhile, due to the effect described
above, the number m of open strings per Hubble volume tends to increase
at a rate of order m per Hubble time. But the length of string converted
into closed loops is removed from the network of open strings, and we
see that this tendency of m to increase is in equilibrium with the tendency
of closed-loop formation to decrease m for m ~ (1/p) In(1/p). Of course,
in view of the crudeness of this discussion, it is evident that the logarithm
should not be taken seriously, but it seems safe to conclude that m will
stop increasing when it reaches an equilibrium value of order 1/p. When
m attains this equilibrium value, Hubble-size loops are forming at a rate
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of order 1/p per Hubble volume and Hubble time. (Loops are also being
destroyed at a comparable rate, breaking open in collisions of loops with
open strings.)

We conclude that, regardless of the detailed configuration of the initial
string network (which might depend on the nature of the phase transi-
tion), the network approaches a steady state in which of order 1/p open
strings cross each horizon volume, and of order 1/p loops with a radius
comparable to the Hubble length are produced per Hubble volume and
Hubble time [29]. A few Hubble times after they form, these loops are
no longer likely to encounter an open string; they have become isolated
from the open-string network.

Since the number of open strings per horizon volume stabilizes, the
energy density due to open strings approaches a fixed fraction of the
radiation density; in order of magnitude this is

Putring/ Praa = (1/ pti)/ (3/327Gty) =Fmp~ (Gp). (1.6.6)

A horizon volume typically contains m ~ 1/p open strings, but there are
of course v'm fluctuations when we compare different horizon volumes.
Since the string formation process is causal, and involves no transfer of
energy over distances greater than ty, there must be compensating
fluctuations in the radiation energy density. But as a comoving volume
comes within the horizon, the motion of the strings at velocities of order
¢ destroys the delicate balance between the string and radiation fluctu-
ations, and, within a Hubble time genuine energy density fluctuations
are established [30], with

(80/ P)orizon ~ O(30)p~*Gp. (1.6.7)

Using our earlier estimate Gu ~ 107%, and taking p ~ 1, these fluctuations
are just barely small enough to be consistent with current observational
bounds on the anisotropy of the microwave background [31].

More novel from the point of view of the formation of large-scale
structure are the fluctuations produced by the closed loops of string.
After a loop forms, its string tension causes it to oscillate with a period
comparable to its size. The oscillating loop is likely to intersect itself,
and, by intercommuting, to cut itself into smaller loop fragments. But it
has been suggested [19,32], and this is the crucial assumption of the
cosmic string model of galaxy formation, that this self-intersection pro-
cess may typically terminate after a parent loop has broken into a small
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number (of order ten) of daughter loops; the daughter loops will assume
configurations that do not self-intersect as they oscillate. The daughter
loops may then survive for a long time, long enough to seed large-scale
structures. And daughters of the same parent loop will have correlated
positions; these correlations will be inherited by the seeded structures
[21, 22, 25]. Since the production and fragmentation of loops of all sizes
occur by the same process - the only relevant length scale in the process
is the size of the loop itself - the distribution of loops has the scale-
invariance property stressed at the beginning of this section.

Even if loops of string cease to self-intersect, they cannot survive
forever. (If they could, the loops would eventually dominate the energy
density of the universe.) The most efficient means by which a string loop
can lose energy is the emission of gravitational radiation [27]. Other
types of radiation that might conceivably be emitted by an oscillating
loop of radius R are quite inefficient when the frequency R of the
radiation is very small compared to the energy uR of the loop. But the
rate of emission of gravitational radiation does not depend only on R;
it is proportional to Gu’. Thus, an oscillating loop loses an appreciable
fraction of its initial energy to gravitational radiation in of order (Gu)™
oscillations. The gravitational radiation emitted by the loops is a very
important feature of the cosmic string scenario because it should be
experimentally detectable [33]. The contribution from decaying loops to
the stochastic gravitation wave background ought to have an observable
influence on pulsar timing measurements within a decade [34].

While on the subject of the evolution of a system of cosmic strings,
let us consider how a system of walls bounded by strings should be
expected to evolve. In a model (like an axion model) in which the
symmetry-breaking scale associated with the domain walls is much lower
than the symmetry-breaking scale associated with the strings, the walls
can have no appreciable influence on the dynamics of the string net-
work until the characteristic distance between the strings is larger
than the wall thickness, and the energy density inside the walls is greater
than the energy density of the surrounding radiation. The distribution
of the walls when they finally do appear can be modeled by an extension
of the simulation of the string network outlined earlier. For the case of
axion strings, we may imagine that the spontaneously broken U(1)
symmetry is not really exact, and that the energetically preferred value
of the order parameter is in region 3 of the unit circle; then we should
place the domain wall so that each link of the lattice that connects 1 and
2 pierces the wall. Sliced through a plane, the domain walls are curves
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Fig. 12. A simulated two-dimensional slice of a system of domain walls bounded by strings.

that connect each vortex to an antivortex. A typical distribution of domain
wall slices is shown in fig. 12. One sees that, in any two-dimensional slice
through the system of walls bounded by strings, slices of wall much
larger than the characteristic distance between strings are not common.
If 1 start at a vortex and walk along the wall, each time I advance by
one lattice spacing the probability that I encounter an antivortex, and
the end of the wall, is 3. Thus, the abundance of long wall slices is
exponentially small [35].

In any two-dimensional slice of the wall-string system, each string is
connected by wall to a nearby “antistring”. In three dimensions, the
system looks like a network of branching ribbons, depicted in fig. 13.
Two strings closely approach each other at one point, and are connected
by a wall. Eventually, these strings wander apart, and another string
assumes the role of partner to these strings. The ribbon of wall connecting
two strings appears to bifurcate; it branches into two ribbons. A ribbon
can also form a “dangling end” if a string folds back on itself. The

— O [2A
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Fig. 13. Three-dimensional view of walls bounded by strings.

branching ribbons form a percolating network that fills space. In the
language of polymer physics, a system of cosmic strings resembles a
polymer melt, and a system of walls bounded by strings resembles a
polymer gel.

The tension in the walls and strings causes the network to jiggle. In
particular, the wall tension induces frequent crossings between the strings
that bound a ribbon. When these strings cross, they sometimes intercom-
mute and sever the ribbon. Rather quickly, unless the intercommuting
probability is very small, the infinite network of ribbons breaks up into
finite pieces. (The system no longer percolates when the mean distance
between breaks in the ribbon becomes comparable to the distance
between branchings.) These finite pieces fragment further, and eventually
decay by emission of gravitational radiation [7, 8].

From a cosmological viewpoint, the wall-bounded-by-string system is
not very interesting. It disappears with hardly a trace, and has little
influence on the evolution of the universe. It is amusing, though, to reflect
once more upon the cosmological status of discrete symmetries in particle
physics. A spontaneously broken exact discrete symmetry causes trouble.
The energy density of the universe would become dominated by a system
of cosmic domain walls, unless the walls are “inflated away”. But if there
is an effective discrete symmetry of low-energy physics that is spon-
taneously broken, it need not cause trouble if the discrete symmetry is
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embedded in a continuous symmetry that became spontaneously broken
at a larger mass scale. There may be strings generated by the higher
symmetry breaking scale that act as boundaries of the domain walls, and
render them harmless. On the other hand, if the strings are inflated away
before the domain walls form, the walls are again troublesome.

2. Monopoles
2.1. The quantization condition

Magnetic monopoles, like vortices, arise as time-independent solutions
with finite energy to the classical field equations of a spontaneously
broken gauge theory. But a monopole has finite energy in three spatial
dimensions, instead of two dimensions. And, unlike a vortex, a monopole
has a long-range (magnetic) gauge field, from which it gets its name.

Most of the mass of the monopole is concentrated in a core with a
size characterized by the scale of the spontaneous symmetry breakdown.
We will return to a more detailed consideration of the structure of the
core later. For now, let us restrict our attention to how the long-range
gauge field might behave.

Suppose that the unbroken gauge group is H =U(1), and that the
long-range (r-c0) U(1) gauge field is that of a magnetic monopole with
magnetic charge g,

B=-§5, E=0. (2.1.1)
A charged particle with electric charge e interacting with the magnetic

monopole satisfies the classical equation of motion
m¥ = er X B. (2.1.2)

This equation of motion is gauge invariant and the classical dynamics it
defines is perfectly sensible whatever the values of e and g. But to define
the quantum mechanics of a charged particle interacting with a magnetic
monopole, we need to introduce the vector potential A such that B=
V x A. The vector potential of a magnetic monopole is necessarily sin-
gular; this singularity leads to trouble, and the result is a restriction on
the magnetic charge g.

To define quantum mechanics, we introduce an action functional S,
and sum over classical histories weighted by the phase €. For a charged
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particle in a magnetic field, the action is
S= Skin + Sims

where Sy, is the action of a free particle, and
2 dr 2
Sim=ef di—-A=eJ. dr- A. (2.1.3)
L 1

The interaction term in the action depends only on the path traveled by
the particle, not on its velocity along the path.

The vector potential A cannot be smoothly defined on a sphere sur-
rounding a magnetic monopole, but does it matter? In quantum
mechanics, we care only about the relative phase associated with two
paths, not about the overall phase. For two paths I' and I"" with the
same endpoints, this relative phase is

(Sint)r - (Sint)r' =€ §

r

dr-A=ef d’S-B=e®r_. (2.1.4)
-r Spp

By applying Stokes’ Theorem, the relative phase has been expressed as
the magnetic flux through a surface bounded by the closed loop I'—I™'
(fig. 14). All reference to the vector potential has disappeared, and the
relative phase therefore appears to be well defined.

But in fact there is still a problem, because the phase is multi-valued.
If the path I is permitted to sweep once around a closed surface
surrounding the monopole and return to its initial position, the action
changes by

ASint = e®sphere = 47Teg (215)

Fig. 14. Two possible trajectories with given endpoints for a charged particle on a closed
surface surrounding a monopole.
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The relative phase associated with two paths is unambiguously defined
only if exp(idS;,) =1, or

eg=n/2, (2.1.6)

where 7 is an integer. Equation (2.1.6) is Dirac’s quantization condition
[36]. The minimum allowed nonvanishing magnetic charge gp = 1/2e is
called the Dirac magnetic charge.

The Dirac quantization condition can be viewed as a consequence
of gauge invariance. As we have seen, it is required for consistency in
the quantum mechanics of a charged particle interacting with a magnetic
monopole that the phase

exp[ie § A dr]
r

associated with a given closed path I is well defined. Although it is not
possible to smoothly define a vector potential everywhere on a closed
surface surrounding a monopole, it is always possible to find a smooth
vector potential on a disk, a surface with boundary. (This follows from
the Poincaré lemma.) Let us therefore imagine that the closed path I’
divides a surface S surrounding the monopole into two disks U (“upper”)
and L (“lower”) and that each disk is equipped with its own vector
potential, denoted Ay and Ay respectively [37]. Consistency requires
that the phases determined by Ay and A, agree for the path I, or

exp(ie § Ay dr> = exp(ie § A - dr). (2.1.7)

This can be rewritten as

1= exp(ie § (Ay—Ay) - dr) = gle( Pyt P — gidmez (2.1.8)
r

where @y is the magnetic flux through the disk U, L; we have obtained
again the Dirac quantization condition.

But now eq. (2.1.8) can be reinterpreted as the statement that Ay and
A, are related on the boundary I common to both disks by a single-valued
gauge transformation on I Defining the gauge transformation

Q(r) = exp[ie J"r (Ay—Ap) - dr]ﬂ(ri), (2.1.9)
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with the line integral performed along I', we have
1
A=A +— (V)07 (2.1.10)
ie

with the gradient taken along I That is, the vector potentials Ay and
A, defined on the upper and lower disks are gauge equivalent on the
boundary I'" where the two disks intersect, and therefore describe the
same physics there. Equation (2.1.8) is just the statement that the gauge
transformation (2 relating Ay and A, on I' is single-valued on I.

The gauge transformation £ maps the closed path I" to U(1), and it
has a winding number

n=2eg; (2.1.11)

this winding number is the integer that appears in the Dirac quantization
condition. We have thus discovered that the Dirac quantization condition
has a topological origin. Magnetic charge is quantized because the
winding number must be an integer. Furthermore, since the winding
number is a topological invariant, it is unaffected by deformations of the
closed surface S or the loop I'; the winding number is intrinsic to the
monopole, and independent of the choice of the surface S enclosing the
monopole, or the loop I' contained in the surface.

To be more explicit, let us choose the surface S to be a sphere centered
on the monopole, and the loop I" to be the equator of the sphere (fig.
15). Then a monopole with B = g#/r* can be represented by [37]

Ay-dr=g(l—cos 6)dep, upper(0<0<m/2),
Ap-dr=—g(l+cos 0)d¢, lower(m/2<0<m). (2.1.12)

At the equator (6 = 7/2), where the two hemispheres intersect, Ay and
A, are related by

(Ay—Ay) - dr=2g =ile (d,2)07, | (2.1.13)

N

Fig. 15. Cutting a sphere at the equator reduces it to two disks.
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where

0(d) =exp(ilegop). ' (2.1.14)

The winding number of 2(¢) is evidently n =2eg.

Now imagine that our sphere, initially very large, smoothly shrinks to
infinitesimal size. As the radius of the sphere shrinks, other multipoles
of the B field other than the monopole may become important, and the
field may become very complicated. But as long as the sphere encounters
no singularities of the B field, the winding number »n must remain
constant, independent of the radius of the sphere. If n is nonzero, we
are forced to conclude that the magnetic charge g is contained in an
arbitrarily small sphere; the monopole is a point singularity. In order to
avoid this singularity the gauge transformation {2 must be allowed to
wander through a larger gauge group containing U(1), in which it can
“unwind”. This is precisely the option exercised by the nonsingular
monopole solution to be described in the next section.

Before proceeding to the discussion of the nonsingular monopole, let
us quickly note that our observations concerning the U(1) monopole can
be easily generalized to apply to configurations with non-Abelian long-
range gauge fields. We can thus obtain a topological definition of magnetic
charge appropriate for the non-Abelian case [38-40].

We may consider gauge fields, defined on a sphere, in the Lie algebra
of an arbitrary Lie group H. As before, we describe the gauge field
configuration by specifying nonsingular gauge potentials Ay, and A, on
the upper and lower hemispheres, and a single-valued gauge transforma-
tion 2(¢) € H that relates Ay and A on the equator. The gauge transfor-
mation (2(¢) is a loop in the gauge group H, classified by the first
homotopy group #;(H). We define the magnetic charge enclosed by the
sphere to be the “winding number” of £(¢), the associated element of
ar,(H). This is the natural generalization of the Abelian magnetic charge.

For example, suppose that the gauge group is H =SO(3). SO(3) is
topologically equivalent to a three-sphere with antipodal points iden-
tified; therefore there are closed paths in SO(3), those beginning at one
point of the three-sphere and ending at the antipodal point, that cannot
be smoothly contracted to a point. But a path that begins and ends at
the same point of the three-sphere can be contracted to a point; it has
winding number zero. Thus, the winding number of a loop in SO(3) can
have only two possible values, 0 and 1, and the magnetic charge in an
SO(3) gauge theory can have only two possible values. In particular, a
magnetic monopole is indistinguishable from an antimonopole.
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More generally, the gauge fields aiways transform as the adjoint rep-
resentation of the gauge group, which is a faithful representation of
H = H/K, where H is the simply connected covering group of H, and
K is a subgroup of the center of H. Magnetic monopoles are classified
by m(H/K)=K. (We may think of H/K as the group H, but with
elements differing by multiplication by an element of K identified as the
same element.) For SU(N) the gauge fields transform as a representation
of SU(N)/Zy, and the allowed magnetic charges take values in Zy.

Our topological definition of non-Abelian magnetic charge is sensible.

As long as the gauge fields are nonsingular and {2 is an element of H,
the winding number must be a constant, independent of the radius of
the sphere. So the magnetic charge is not carried by the long-range field
of the monopole; it either resides on a point singularity (Dirac monopole)
or a core in which gauge fields other than H gauge fields are excited
(nonsingular monopole). And this magnetic charge is obviously conser-
ved. It is a discrete quantity. But time evolution is continuous, so the
total magnetic charge must be time independent.
- While other gauge-invariant definitions of magnetic charge are poss-
ible, only the topological definition, which requires the monopole to
have a point singularity or a core, can guarantee the stability of the
monopole. If we assign “magnetic charge” to an H gauge field that is
nonsingular everywhere in space, nothing can prevent this ‘“magnetic
charge” from propagating to spatial infinity as non-Abelian radiation
[39, 41].

So far we have considered magnetic monopole configurations in a
classical gauge field theory, but eventually we must worry about quantum
mechanical effects on the magnetic field. There is really something to
worry about, because non-Abelian gauge theories are believed to be
confining, and to have no massless excitations. Therefore, the magnetic
field must be screened by gluon fluctuations at distances large compared
to the confinement distance scale [39,42]. Fortunately, since our
definition of magnetic charge is topological, it can be applied to the
quantum theory. The gluon fluctuations that cause the magnetic screening
cannot change the winding number of the field configuration.

2.2. Monopoles as solitons
The finite-energy field configurations of a spontaneously broken gauge

theory in three dimensions are subject to a topological classification
closely analogous to the classification of vortices in section 1.3. In carrying
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out this classification, we will discover a close connection between the
topological charge and magnetic charge of a soliton [4, 39, 40].

For a theory in which the gauge group G is spontaneously broken to
the subgroup H, the vacuum manifold is

G/H={®, & =00, Qe G}, (2.2.1)

where @, is a standard reference vacuum preserved by the subgroup H.
For any field configuration of finite energy, the order parameter must
assume a value in the vacuum manifold at each point on the two-sphere
at spatial infinity. Thus to each finite-energy field configuration we may
assign a mapping from $? into the vacuum manifold G/ H. If this mapping
cannot be smoothly deformed to the trivial constant mapping, there is
an associated topological soliton. ‘

By multiplying by an appropriate constant element of G, we may turn
any mapping from S? into G/ H into a mapping that takes an arbitrarily
chosen reference point, say the north pole, to @,. The mappings from
S? into G/H that take the north pole to @, fall into topological
equivalence classes, such that two mappings are in the same class if they
can be smoothly deformed into one another. These classes are endowed
with a natural group structure, since there is a natural way to compose
two mappings that both take the north pole to @,. This group is 7,(G/ H),
the “second homotopy group” of G/H.

The group 7,( G/ H) is discrete; its elements are the possible “topologi-
cal charges” of finite-energy field configurations. The discrete topological
charge is preserved by continuous time evolution, and the classical field
theory has a topological conservation law.

How can we compute 7,(G/H)? Mappings from S? into G/H are
not so easy to visualize. But fortunately, we can, by a trick, reduce the
topological classification of two-spheres in G/H to the topological
classification of loops in H. This reduces the calculation of 7,(G/H) to
the calculation of 7,(H), which we already know how to do.

The trick is to cut the sphere into two hemispheres, along the quator.
Given a mapping @(6, ¢) from S? into G/ H it is possible to find smooth
gauge transformations {2, and {2, on each hemisphere that rotate the
order parameter to the reference position @y:

QU(G) ¢)¢(0s d)):‘p()’ upper (Osesﬂ/z)s
02,(6,0)D(6, p)=Dy, lower(w/2<6=<). (2.2.2)

On the equator 6 = 7/2, where the two hemispheres intersect, the gauge

- 0T 194
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transformation 2 = 02,01 can be defined; it preserves @, and is thus
in the subgroup H. So

Qu(0=m/2,¢)02(0=m/2,)=02(¢)e H. (2.2.3)

Now, either this loop in H can be contracted to a point in H, or it
cannot be. If the loop 2(¢) in H is contractible in H, then the mapping
@(6, ¢) can be deformed to a trivial constant mapping. To see this, note
that eq. (2.2.2) is still satisfied if we make the replacement

046, ¢) > 26, )= 27(8, $)2u(8, ¢), (2.2.4)

where (3(6, ¢) H. We may choose (6, ) to be the homotopy that
contracts {2(¢) in H; that is

D(0=m/2, $)=02(¢), 2(6=0)=1. (2.2.5)

Now 2=, at §=/2, and we have found a gauge transformation
smoothly defined on the whole sphere that takes @(6, ¢) to ®,. Further-
more, it is known that 7,(G) =0 for any compact Lie group G. Thus,
this gauge transformation can be deformed to the trivial gauge transfor-
mation, and the mapping @(6, ¢) can be smoothly deformed to @,.

If, on the other hand, the loop £2(¢) is not contractible in H, then-it
is clear that the mapping P(6, ¢) cannot be deformed to the trivial
mapping; the deformation of ®(6, ¢) to P, would necessarily define a
homotopy in H that shrinks £(¢) to the identity. Notice, though, that
our loop £(¢), which is not contractible in H, can be contracted to a
point in G. As 8 varies from 7/2 to 0 (or 7), 2y(6, ¢) provides a
homotopy that shrinks Qy(7/2, ¢) (or 2.(7/2, ¢)) to a point. Since
both 2y(0=m/2, ¢) and 2,(6=/2, ¢) are contractible loops in G,
so is 2 = Qu0N7%

We have now seen that to every class of topologically nontrivial maps
d(0, ¢) from S* to G/ H there corresponds a class of loops 2(6) in H
that cannot be contracted to a point in H, but can be contracted in G.
It is not hard to see that this correspondence is actually one-to-one; in
an equation,

m(G/H)=m(H)/m(G). (2.2.6)

It only remains to show that, given any noncontractible loop in H that
is contractible in G, there is a corresponding noncontractible two-sphere
in G/H. Indeed, this two-sphere is generated by the homotopy that
shrinks the loop £2(¢) € H (represented by a point in G/H) to a point
in G (fig. 16). Given the loop 2(¢) in H, contractible in G, we can find
smooth gauge transformations 2y and (2, in G defined on the upper
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Fig. 16. The homotopy that shrinks a loopin H to a pointin G defines a two-sphere in G/ H.

and lower hemispheres such that
Qy(0=7/2,¢)=12(¢), Q(0=7/2,¢)=1; (2.2.7)

we simply choose 2y(6, ¢) to be the smooth deformation in G of the
loop £2y(0 = /2, ¢) to the point 2,(6=0). Now,

D(6, ) = Do, (m/2<6<m), (2.2.8)

is the smooth mapping from S* into G/H corresponding to the loop
2(s).

We saw earlier that the magnetic charge of a configuration with a
long-range H gauge field is specified by an element of 7,(H). And we
noted that, for a nonsingular monopole, it must be possible to unwind
the noncontractible loop in H through a larger group G. Now we have
found that the topological charge of a finite-energy field configuration
in a theory with gauge group G spontaneously broken to the subgroup
H is an element of 7(H)/m(G). We cannot help but suspect that the
topological and magnetic charges of a finite-energy configuration pre-
cisely coincide. To verify this conjecture, we must consider the long-range
gauge field of the soliton.

As in our analysis of vortices, we must require of a finite-energy
configuration that the covariant gradient of the order parameter falls off
sufficiently rapidly at large distances,

Dg@ = (8, - ieAi) @ —— 0. (2-2-9)

In the gauge constructed in eq. (2.2.2), for which & = @, on the sphere
at r=o00, the only gauge fields that can be excited at large r are the H
gauge fields, those associated with the generators of G that annihilate
@,. If the gauge field A is nonsingular on the sphere in the gauge for
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which @(6, ¢) is nonsingular, then the gauge fields Ay and A, defined
on each hemisphere are nonsingular in the gauge defined by eq. (2.2.2).
Furthermore, at the equator, Ay and A, are related by the gauge transfor-
mation 2(¢). The winding number of £2(¢), which is the topological
charge of the soliton, is also the magnetic charge as defined in the previous
section. Topological charge does indeed equal magnetic charge.

In any unified gauge theory, the electromagnetic U(1)., gauge group
is embedded in a semisimple group that is spontaneously broken. The
analysis of this section shows that every unified gauge theory contains
magnetic monopoles as topological solitons. We will encounter some
examples in the next two sections.

2.3. The classical monopole solution

A monopole, like a vortex, has a core with a characteristic finite size.
The size of the core and the mass of the monopole are determined by
the classical field equations. We would like to estimate the size and mass,
as we did for a vortex. For this purpose we will consider the simplest
unified gauge theory that contains a monopole solution; it was in the
context of this model that the non-singular monopole was first discovered
by ’t Hooft [43] and Polyakov [44]. More complicated models will be
described in the next section.

The model has the gauge group G =SU(2) and a Higgs field @ in the
triplet representation of the group; its Lagrangian is

L=—%F2,F"”“'+%D“¢"D“¢°— U(e), (2.3.1)
where
U(®) =i (DD - v?), (23.2)
D,®°=3,0° — e A}, @, (2.3.3)
Fo,=03,A%—3,A% — ec AL A°, | (23.4)
and a=1, 2, 3.
The potential U(¢®) is minimized by
@ =(0,0, v) (2.3.5)

(in a particular gauge), and the SU(2) gauge symmetry is evidently
spontaneously broken to H = U(1). In perturbation theory, the spectrum
of the model consists of a vector boson with mass my= ev and a scalar
with mass ms=~/ A
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The vacuum manifold G/ H, the space of values of @ that are gauge
equivalent to (2.3.5), is obviously isomorphic to the two-sphere S?. The
simplest topologically nontrivial mapping from S* into S? is the identity
map. Thus, the monopole configuration, in a particular gauge, is one for
which the order parameter ¢ on the sphere at spatial infinity takes the
form :

@ = vr°, (2.3.6)

This configuration is also called a “hedgehog”, because the order par-
ameter points radially outward.

The classical solution with the asymptotic behavior (2.3.7) has two
characteristic length scales. These are the radii rs and ry of the regions
in which the scalar field and vector field respectively depart significantly
from their asymptotic values. (Compare the discussion of the vortex in
section 1.1.) These lengths are chosen to minimize the energy

E= J d®x [ E°E¢+1B*B+1D,®°D,®° + U(®)] (2.3.7)

of the configuration. For a spherically symmetrical configuration, E is
given in order of magnitude by

4qr 1 e

E =~—my| —+—=mir3

é V[mvrv NN

e e
+(mvrv_ﬁmsrs)e(rv— rs)+mmsrs]. (2.3.8)

The first term is the magnetic seif-energy of a magnetically charged sphere
with radius ry; it favors expansion of ry. The second term is the energy
stored in the potential U(@®); it encourages rs to shrink. The third term
is the energy due to the circumferential gradient of the scalar field &.
This term ties together the two length scales ry and rg, because the
gradient becomes substantial for r> rg, and is eventually *“screened” by
the gauge field at r ~ ry. (This term is not present for rs> ry.) The fourth
term is the energy due to the radial gradient of &.
Now rg and ry can be chosen to minimize the energy. We find:

ms>my: rs~ms',  ry~my',

E = Mponapote ~ (47/ €*)my, (2.3.9)
mg<my: rg~my', rv~my',

E = Mpnonopote ™ (47/ €*)my. (2.3.10)

The monopole mass is not sensitively dependent on the ratio ms/my;
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when myg is large, the scalar core radius is small, and the contribution
of the scalar core energy to the total energy is not significant.

Comparing ry and Myenopoles WE s€€ that the size of the monopole core
is larger by the factor a '=(4w/e’) than the monopole Compton
wavelength. As a result, the quantum corrections to the structure of the
monopole are under control, if « is small. Even though the coupling
g =1/e is large, the effects of virtual monopole pairs are small, because
the monopole is a complicated coherent excitation that cannot be easily
produced as a quantum fluctuation.

This situation should be contrasted with the quantum mechanics of a
point monopole. Virtual monopole pairs have a drastic effect on the
structure of the point monopole, for which g is a genuine strong coupling.
In fact, the vacuum-polarization cloud of a point monopole must extend
out to distances of order (am)™', because the magnetic self-energy of a
monopole of that size is of order m. Thus, both the nonsingular monopole
and the point monopole have a complicated structure in a region with
radius of order (am)™'. But for the non-singular monopole, we have an
explicit classical description of this structure, and quantum corrections
are small and calculable if a is small. The point monopole, on the other
hand, is a genuine strong-coupling problem. We cannot calculate any-
thing.

The estimate My onopote ~ (47/ e*)my, where my is the mass of a heavy
vector boson, also applies to more complicated unified gauge theories
(see section 2.4). In a typical grand unified theory, we might have
my~ 10" GeV, and thus mypopote ~ 10'° GeV. A monopole might there-
fore be a spectacularly heavy elementary particle; 10’ GeV~10"°g~
10°J is comparable to the mass of a bacterium, or the kinetic energy of
a charging rhinoceros.

2.4. Examples

In order to gain a deeper understanding of the topological formalism
that we have developed, we will now apply this formalism to a number
of model gauge theories that contain monopoles [40]. In the process, we
will learn much that is interesting about the properties of the monopoles
in the various models.

2.4.1. A symmetry-breaking hierarchy
Our first example illustrates the importance in monopole theory of the
global structure of the unbroken gauge group. Consider a model with
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gauge group G =SU(3) and a scalar field @ transforming as the adjoint
(octet) representation of G:@ can be written as a hermitan traceless
3 X3 matrix, which, under a gauge transformation (2(x), transforms
according to '

D(x) = 2(x)P(x)2 7 (x). (2.4.1)
Suppose that @ acquires the expectation value
(@)= Po=(v) diag(3,3,— 1), (24.2)

where v is the mass scale of the symmetry breakdown, and the
diag(3,3, —1) notation denotes a diagonal matrix with the indicated
eigenvalues. :

The unbroken subgroup H of G, the stability group of @, is locally
isomorphic to SU(2) x U(1). *Locally isomorphic” means that H has the
same Lie algebra of infinitesimal generators as SU(2) x U(1). The gen-
erators of H are the SU(3) generators that commute with @,. These are
the SU(2) generators that mix the two degenerate eigenstates of &,, and
also the U(1) generator

Q =diag(3,3,~1), (24.3)

which is proportional to @,, and obviously commutes with it. (The
eigenvalues of Q are the U(1) electric charges of the members of the
SU(3) triplet, in units of e.)

To perform the topological classification of monopole solutions in this
model, we need to determine 7,(G/H) = m,(H). So it is not sufficient
to know that H has the local structure of the direct product SU(2) x U(1);
we must know its global structure. For this purpose, we check to see
whether the U(1) subgroup of G generated by Q has any elements in
common with the unbroken SU(2) subgroup, other than the identity.
And, indeed

exp(i27Q) = diag(-1, —1,1) (2.4.4)
is the nontrivial element of the center Z, of SU(2). We conclude that
H=[SUQ2)xU(1))/Z,, (2.4.5)

4%

where “="" denotes a global isomorphism; there are two elements of
SU(2)xU(1) corresponding to each element of H.

The topologically nontrivial loops in H consist of loops winding
around the U(1) subgroup of H, and also of loops traveling through the
U(1) subgroup from the identity to the element in eq. (2.4.4) and returning
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SU(2) Su(2)
-1 -1
1 1
un u(n
- {a) (b)

Fig. 17. An (a) minimal and (b) nonminimal loop in H; =[SU(2) x U(1)}/Z,.

to the identity through the SU(2) subgroup of H (fig. 17). If we failed
to recognize that H is not globally the direct product SU(2) x U(1), we
would have missed the latter set of nontrivial loops, and thus missed
half of the monopole solutions in this model.

The monopole with minimal U(1) magnetic charge is associated with
a loop that winds only half-way around U(1); it necessarily also has a
Z, non-Abelian magnetic charge. It is very instructive to examine closely
the Dirac quantization condition satisfied by this monopole. By an
appropriate gauge choice, the long-range gauge field of the monopole
can be chosen to have the form [45, 39]

1
Ay dr=£ Qm(l—cos 8)d¢, upper(0<6<m/2),

1
A +dr= e Qm(1+cos 6) d¢, lower(w/2<60<), (2.4.6)

where Qy is a constant generator of H, and e is the gauge coupling. The
gauge transformation that relates Ay and A, at the equator is

0(p)=e'Wm?, (2.4.7) |

Since {2 is required to be a single-valued gauge transformation, Qn must
have integer eigenvalues. This is the Dirac quantization condition.

The matrix Qy can be chosen to be diagonal; hence, it can be expressed
as a linear combination of Q and the SU(2) generator

T, =diag(3, -1, 0). (2.4.8)

Comparing (2.1.12) and (2.4.6), one sees that the U(1) magnetic charge
g of the monopole is the coefficient of 2eQ in this expression for Q.
Since Q has the eigenvalue 3, one’s naive expectation may be that the
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minimal magnetic charge allowed by the Dirac quantization condition
is g =1/ e. But this expectation is wrong for a monopole that carries both
a U(1) magnetic charge and an SU(2) magnetic charge [46]. The choice
of Qy for which e'®® is the minimal loop in H is not Qyu=2Q, but

Qu=Q'= T+ Q =diag(1,0,-1); (24.9)

the associated monopole has U(1) magnetic charge g=1/2e.

Equation (2.4.4) implies that objects with trivial SU(2) “duality” have
integer U(1) charge Q, although objects with nontrivial duality can have
half-integer charge. Thus, the Dirac quantization condition can still be
expressed as n =2eg, as in section 2.1, but e must now be interpreted as
the minimal U(1) charge carried by an SU(2) singlet object.

In “realistic” unified gauge theories, spontaneous symmetry break-
down typically occurs at two or more scales differing by many orders of
magnitude. To illustrate the effect of such a symmetry-breaking hierarchy
on magnetic monopoles, let us imagine that the G=SU(3) gauge sym-
metry of our model breaks down in two stages, first to H;,=
[SU(2)xU(1)])/Z, at mass scale v,, then to H,=1U(1) at mass scale
0, <€ 0y,

G=SUG) S H, =[SUQ)xU(1)]/Z, = H,=U(). (2.4.10)

The effect of the second stage of symmetry breakdown on the monopoles
generated by the first stage depends on which U(1) subgroup of H,
remains unbroken at the second stage [47].

First, suppose that H, is the U(1) subgroup generated by

Q,= Q' =diag(1,0,—1). (2.4.11)

Since this is the same charge as that carried by the monopole associated
with the G- H, breakdown at mass scale v,, the breakdown at the much
lower mass scale v, has no significant effect on the monopole.

But if H, is the U(1) subgroup generated by

Q.= Q =diag(3,3, -1), (24.12)

the monopole is significantly affected, for the only monopole solutions
now have twice the U(1) magnetic charge allowed by the G- H,
breakdown.

What would happen to the minimal G/ H; monopole if we varied the
parameters of the model so as smoothly to turn on the second symmetry-
breaking scale v,? This question is not entirely academic, because the
H, symmetry is expected to be restored at sufficiently high temperature,
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T > v,. As the temperature is lowered, a phase transition occurs at T~ v,
in which H,; becomes spontaneously broken. We might be interested in
what happens to the minimal G/ H, monopoles during this phase transi-
tion, especially since a phase transition like this one may have occurred
in the very early universe.

A reasonable guess is that pairs of minimal G/H; monopoles or
monopole-antimonopole pairs become connected by magnetic flux tubes,
and form composite objects with either twice the minimal U(1) magnetic
charge or zero magnetic charge. To verify that this guess is correct, we
note that the U(1) factor of H, is unaffected by the second stage of
symmetry breakdown, and that the fiux tubes associated with the second
stage are classified by

m(SU(2)/Z,)=Z,. (2.4.13)

Thus, the SU(2) magnetic flux emanating from the minimal G/H,
monopole does indeed become confined to a Z, flux tube. It may be
helpful to restate this argument slightly differently: Associated with the
G/ H, monopole is the noncontractible loop in H, depicted in fig. 17a.
Since this loop cannot be deformed to a loop contained entirely in H,,
there is also an associated H,/H, vortex. But the composition of two
such loops is homotopic to the loop in H, depicted in fig. 17b. (It is
equivalent to the composition of a loop in H, and a loop in SU(2), and
the loop in SU(2) can be shrunk to the identity, because SU(2) is simply
connected. See fig. 18.) Therefore, the vortex is a Z, vortex, and the Z,
magnetic flux confined to the vortex is precisely the Z, magnetic flux
carried by the G/H, monopole.

The flux tubes link each G/ H, monopole with minimal H, magnetic
charge to either another monopole or an antimonopole, since the
monopole and antimonopole carry the same Z, charge. The bound pairs
of monopoles have the minimal H, magnetic charge allowed by the Dirac

SuU(2) =

uln)

Fig. 18. The composition of two minimal loops in H; =[SU(2) x U(1)]/Z, is homotopic
to a loop in H,=1U(1).
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quantization condition. The thickness and energy per unit length of the
flux tubes are determined by the lower symmetry-breaking scale v,; the
thickness is of order (ev,) ™', and the energy per unit length is of order v3.

Note that the flux tubes in this model are not absolutely stable; they
can break in two via the nucleation of a monopole pair. But this process
is a highly unlikely quantum tunneling event if v, ® v,. The barrier that
must be penetrated has height of order m and width of order m/ u, where
m~v,/e is the monopole mass and u ~ v3 is the tension in the tube.
Thus, the probability per unit length and time of pair nucleation is, in
order of magnitude,

I'cexp(—m?/ )~ exp(—v3/ e*vd). (2.4.14)

This probability is absolutely negligible for v, > v,.
Finally, suppose that the unbroken U(1) group H, is generated by

Q,= Ty =diag(3, -3, 0). (2.4.15)

In this case H, is contained in SU(2) c H, and the symmetry breakdown
H,—- H, can be represented by

H,=SU(2)xU(1)
i ! - (2.4.16)
H,=U(1) 1
The flux tubes associated with the breakdown of H, are classified by
m[UQ)]=2. | (2.4.17)

These are the Z flux tubes to which the U(1) magnetic flux becomes
confined, and therefore no heavy monopoles with mass of order v,/e
can survive when v, turns on; all heavy monopoles become bound to
antimonopoles by the flux tubes. Since 7,(G/H,)= Z, there must still
be stable, but light (mass of order v,/e), monopoles associated with the
symmetry breakdown H,- H,.

We see that magnetic monopoles generated at a large symmetry-
breaking mass scale may be affected by a small symmetry-breaking mass
scale in various ways. The monopoles may survive intact, may become
bound by flux tubes into monopole-antimonopole pairs, or may become
bound into both monopole-antimonopole pairs and clusters of n
monopoles. And, of course, new monopoles might also be generated at
the smaller mass scale.
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Exercise. Show that for any symmetry breaking hierarchy of the form
G- H,—> H,, if a monopole generated by the first stage of symmetry
breakdown is unable to survive at the second stage, then a flux tube is
generated at the second stage that can end on the monopole. (Use the

topological classification of vortices and monopoles in sections 1.3 and
2.2.)

2.4.2. The SU(5) model
The SU(5) model is a realistic grand unified theory that has many features
in common with the simpler model considered above.

The SU(5) model is the simplest gauge theory uniting the SU(3), gauge
group of the strong interactions with the [SU(2) X U(1)]., gauge group
of the electroweak interaction. This model undergoes symmetry break-
down at two different mass scales.

G=SU(5)> H, = {SUR).x[SU(2) x U(1)].}/Zc

3 H,=[SUB).xU(1)..1/Z.. (2.4.18)

Here v,~250 GeV is the mass scale of the electroweak symmetry break-
down, and v, ~ 10" GeV is the mass scale of unification.

The order parameter for the symmetry breakdown at mass scale v, is
a scalar field @ transforming as the adjoint representation of G, which
acquires the expectation value

(@)= By=1, diag(}, 1,3, -3, ). (2.4.19)

The stability group H of G is locally isomorphic to SU(3) xSU(2) x
U(1), where SU(3) acts on the three degenerate eigenvectors of @,/ v,
with eigenvalue 1, and SU(2) acts on the two degenerate eigenvectors
with eigenvalue —1. The unbroken U(1) is generated by

Q=diag(,3,3,-3,-13), (2.4.20)
and, since
exp(i27Q) = diag[exp(i27/3), exp(i27/3), exp(i27/3), -1, —1],
(2.4.21)

we see that this U(1) contains the center of SU(3) x SU(2), so that the
unbroken group is actually H,=[SU(3) x SU(2) x U(1))/Zs.

Equation (2.4.21) ensures that any object with trivial SU(3) triality
and SU(2) duality has integer U(1) charge, in units of e. Thus, there




294 J. Preskill

exists a magnetic monopole in this model with the Dirac U(1) magnetic
charge gp=1/2e, which also carries a Z; color magnetic charge and a
Z, SU(2) magnetic charge. In an appropriate gauge, we may regard the
magnetic charge carried by the monopole to be a U(1)’ charge generated
by

Q' = Q+ Queax+ Qcotor = diag(0, 0,1, 0, —1), (2.4.22)
where
weax = diag(0, 0,0, 3, —3), (2.4.23)
is an SU(2) generator and
Qeotor = diag(—3, —3,%,0,0,), (2.4.24)

is an SU(3) generator. Since Q' has integer eigenvalues, a monopole with
U(1) magnetic charge g = g = 1/2e is consistent with the Dirac quantiz-
ation condition.

The electroweak symmetry breakdown at mass scale v, leaves unbroken
the U(1)., subgroup of [SU(2) X U(1)].. generated by

Qcm = Q+ Qweak= diag(%’ %’ %’ 0, _1)' (2‘4°25)

Since exp(i27Q.) is a nontrivial element of the center of SU(3)., the
unbroken subgroup is H,=[SU(3)xU(1)]/Z,;, and the monopole with
minimal U(1),,, magnetic charge still carries the U(1)’ charge generated
by Q'. (Although a quark can carry electric charge 1/3, a monopole with
magnetic charge gp is consistent with the Dirac quantization condition
because color-singlet objects carry integer charge.)

The structure of the SU(5) monopole is not much affected by the
electroweak symmetry breakdown, because the magnetic charge carried
by the monopole is not changed by this breakdown. There are no W and
Z fields excited inside an electroweak core with a radius of order
(ev,) '~ My, at least in the classical approximation. The true core of
the monopole has a radius of order (ev,)™ ~107>* cm and the mass of
the monopole is of order (v,/e) ~ 10" GeV.

That the electroweak SU(2) x U(1) gauge symmetry is restored within
a distance My of the center of the monopole has some important
consequences, though. For one thing, two monopoles with a separation
much less than My, may orient their magnetic charges in orthogonal
directions in SU(3) x SU(2) X U(1), and reduce their Coulomb repulsion
to zero. For an appropriate choice of parameters, it is then possible for
the attractive force between the monopoles generated by scalar exchange
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to cause a stable two-monopole bound state to form, with twice the
minimal U(1).,, magnetic charge [48].

2.4.3. A Z, monopole

In the previous examples, we encountered monopoles that carry both a
U(1) magnetic charge and a non-Abelian magnetic charge. It is possible,
of course, for a monopole to carry a pure non-Abelian charge.

For example, consider a model with gauge group G=SU(3), and a
scalar field @ transforming as the symmetric tensor representation of G.
@ can be written as a symmetric 3 X3 matrix, which, under a gauge
transformation (2(x), transforms according to

d(x) > 2(x)P(x)N7(x). (2.4.26)
If @ acquires the expectation value
(D)= Dy= 101, (2.4.27)

then G is spontaneously broken to H =SO(3). The monopoles of this
model are classified by ‘

m(G/H)=m[SO(3)]= Zz- (2.4.28)

They are Z, monopoles carrying SO(3) magnetic charges. The monopole
and antimonopole are indistinguishable.

It is interesting to examine the fate of these monopoles if there is a
symmetry-breaking hierarchy of the form

G=SU(3)— H,=S0(3) > H,=U(1), (2.4.29)
where H,=U(1)< SO(3) is generated by
Q =diag(3, -3, 0). (2.4.30)

There will, of course, be 7,(H;/ H,) monopoles generated by the second
stage of symmetry breakdown. These are light monopoles, with core
radius of order (ev,)”! and mass of order v,/ e, defined by topologically
nontrivial loops in H, that can be contracted to a point in H;.

But the light monopoles are not all the monopoles of this model;
m(G/ H,) is larger than 7,(H,/H,), because there are topologically
nontrivial loops in H, that cannot be contracted to a point in H,, but
are contractible in G. Thus, there are monopoles with half the magnetic
charge of the minimal =, (H,/H,) monopole that are generated by the
first stage of symmetry breakdown. These are heavy monopoles with a
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core radius of order (ev;)”' and a mass of order v,/ e. They are just the
Z, monopoles, which have been converted into Z monopoles with the
Dirac magnetic charge by the physics of the second stage of symmetry
breakdown. If we turn on v, smoothly, the Z, monopole, which is
equivalent to its antiparticle, must choose the sign of its U(1) magnetic
charge at random [49].

The heavy monopole has two cores, and most of its mass resides on
its tiny inner core. But if two heavy monopoles are brought together,
their inner cores can annihilate, and only the outer cores need survive.
So the doubly charged light monopole can be regarded as a very tightly
bound composite state of two singly charged heavy monopoles.

2.4.4. The SO(10) model

The SO(10) model is the next simplest realistic grand unified theory,
after the SU(5) model. There are several possible choices for the sym-
metry-breaking hierarchy of the SO(10) model, and the properties of its
monopoles depend on this choice. Rather than enumerate all the
possibilities, let us focus on one particularly interesting case.

The group SO(10) is not simply connected, but has the simply con-
nected covering group Spin(10). The 16-dimensional spinor representa-
tion of Spin(10) is a double-valued representation of SO(10)=
Spin(10)/Z,. All representations of Spin(10) can be constructed from
direct products of 16’s.

Let us suppose that the order parameter for the first stage of symmetry
breakdown in the SO(10) model is a scalar field @ that transforms as
the 54-dimensional representation of SO(10): @ can be written as a
traceless symmetric 10 X 10 matrix transforming according to

D(x) > 2(x)P(x)N27(x), (2.4.31)
where 2(x) e SO(10). If & acquires the expectation value
(D)= D=1, diag(2,2,2,2,2,2,~-3,-3, -3, -3), (2.4.32)

then the unbroken subgroup H is locally isomorphic to SO(6) x SO(4).
This group is, in turn, locally isomorphic to the direct product of SU(4),
the covering group of SO(6), and SU(2) x SU(2), the covering group of
SO(4).

To determine the global structure of the unbroken group, we check
for nontrivial elements of SU(4)xSU(2)xSU(2) that act trivially in
Spin(10). Since the fundamental spinor representation of Spin(10) trans-
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forms under SU(4) x SU(2) x SU(2) as
16> (4,1,2)+(4,2,1), (2.4.33)

we see that the element (—T1,, —1,, —1,) of SU(4) x SU(2) x SU(2) does
act trivially on the spinor. Thus, the symmetry-breaking pattern is [50]

G = Spin(10) — H, =[SU(4) x SU(2) X SU(2)]/Z.. (2.4.34)

The monopoles arising from this symmetry breakdown are Z, monopoles
carrying SU(4) and SU(2)xSU(2) magnetic charges, classified by
m(G/ Hy) = m(H,)=Z,.

Now suppose that, at a lower mass scale v,, the symmetry breakdown

H, =[SU(4) xSU(2) x SU(2)]/Z,
2 H,=[SUG)xSU(2) x U(1)]/Zs (2.4.35)

occurs. (The order parameter could be a scalar field transforming as the
16-dimensional spinor representation of SO(10).) H, is exactly the same
as the unbroken gauge group of the SU(5) model, and the monopole
with the minimal U(1) magnetic charge in this SO(10) model also carries
SU(3) and SU(2) magnetic charges, just like the monopole of the SU(5)
model. '

But, as in the example of section 2.4.3, the doubly charged monopole
in this model is lighter than the monopole with minimal charge [51].
The minimal monopole defines a loop in H, that cannot be contracted
to a point in H,, but can be in G. So the core of this monopole has a
radius of order (ev;)™', and its mass is of order (v,/e). The doubly
charged monopole, however, has no SU(2) magnetic charge, and it defines
a loop in H, that can be contracted to a point in H,. It arises from the
breakdown of H, to H,, and has a core radius of order (ev,)”! and a
mass of order (v,/e). Neither the minimal monopole nor the doubly
charged monopole is much affected by the subsequent breakdown of H,
to H;=[SU(3)xU(1)]/Z,.

In general, a grand unified theory with a complicated symmetry-
breaking hierarchy may possess several stable monopoles with widely
disparate masses, the monopole of minimal U(1),,, charge being the
heaviest. The SO(10) model described here is the simplest realistic
example illustrating this possibility.
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2.4.5. Monopoles and Alice strings
Let us consider again the model discussed in section (1.2). This model
undergoes the symmetry breakdown

G =S50(3)~> H =0(2). (2.4.36)

There are, of course, noncontractible loops in O(2) that can be contracted
to a point in SO(3), so this model contains magnetic monopoles.

We noted earlier that the unbroken group O(2) contains a “charge
conjugation” operator (2, that flips the sign of the SO(2) generator Q,

0,00)=-0Q. (2.4.37)

Thus, there is a gauge transformation in H that changes the sign of an
electric or magnetic charge. Apparently, there is no gauge-invariant way-
to distinguish a monopole from an antimonopole in this model. (A
“hedgehog” is no different from an “‘antihedgehog”, because the order
parameter is a “headless” vector in three-dimensional space.) It seems,
though, that one can distinguish a pair of monopoles (or antimonopoles)
from a monopole-antimonopole pair; the ambiguity afflicts only the sign
of the total charge, not the relative charge of two objects. A

However, we must recall that, since O(2) is not connected, this model
also has a string solution. Furthermore, an object that circles the string
becomes gauge transformed by £,. In particular, a monopole that winds
once around the string becomes an antimonopole [18].

There is a local criterion for distinguishing between a pair of monopoles
(or antimonopoles) and a monopole-antimonopole pair; we can bring
the two objects together and see whether they will annihilate or not. But
this criterion is not globally well defined if strings are present. Whether
they annihilate or not depends on how many times the monopoles wind
around the strings before they are brought together.

Magnetic charge is conserved, so the magentic charge lost by a
monopole that winds around a string cannot disappear; it must be
transferred to the string. If the string is open, the magnetic charge is
transmitted to infinity along the string. But if the string is a closed loop,
a finite magnetic charge density remains on the string, after it interacts
with the monopole. ‘

A cross section of a magnetically charged loop of string is sketched
in fig. 19; the order parameter on a large sphere surrounding this loop
is in a hedgehog configuration. On each cross section of the string, the
order parameter winds through a path contained in a “plane” of G/ H.
The number of times this plane twists around as the loop of string is
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Fig. 19. The cross section of a magnetically charged loop of string.

traversed is a topological invariant of the string, and this topological
invariant is the magnetic charge. The loop is a peculiar highly excited
monopole, whose core has been distorted into a ring of radius R, and
thickness (ev)™. |

Exercise. The Pati-Salam model is an extension of the standard model
with gauge group SU(4)co10r X SU(2). X SU(2)g in which a single gener-
ation of fermions (plus a right-handed neutrino) transforms as the rep-
resentation (4, 1,2)r+(4,2,1),. Describe the monopole of the Pati-
Salam model. Specifically, find the monopole “‘charge” Qy, both in a
phase with unbroken gauge symmetry SU(3)co10r X SU(2)L X U(1)y and
in a phase with unbroken gauge symmetry SU(3)co10r X U(1)em-

2.5. Monopoles in other contexts

Topological considerations very similar to those that arise in the
classification of monopoles can also be applied in quite different physical
contexts. I will briefly describe two examples here. The first example
concerns the topological properties of the phase acquired by the
wavefunction of a quantum system under adiabatic transport [52]. The
second example concerns a topological obstruction that makes it imposs-
ible to introduce spinors on certain manifolds [53].

2.5.1. Berry’s phase

Consider a family of Hamiltonian systems parametrized by a set of
variables A that take values in a manifold M. And suppose that the
Hamiltonian H(A) is a smooth function of A. If each H(A) has purely
discrete spectrum and no degeneracies, then each (normalized) eigen-
function ¢(A) and its corresponding eigenvalue E(A) are also smooth
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functions of A, defined by
H(A)g(A)=E(A)¢(A). (2.5.1)

Actually, of course, eq. (2.5.1) leaves the phase of ¥(A) undetermined.
It is surely possible to define the phase of (A) locally on the manifold
M so that it varies smoothly with A. But it is not necessarily possible to
define the phase of {(A) globally on M. We would like to determine
under what conditions a global definition of the phase is possible.

In order to compare the phases of ¢(A) at different values of A, it is
useful to introduce a notion of parallel transport of the phase of ¢ on
the manifold M. A particularly natural notion of parallel transport is
adiabatic transport. Given a path A(¢) in M parametrized by t€[0, 1],
we may consider traversing this path infinitesimally slowly, allowing
(A (1)) to evolve according to the time-dependent Schrodinger equation.
Then, since H(A(t)) has discrete spectrum and no degeneracies, the
quantum adiabatic theorem ensures that the intial wave function /(A (0))
will evolve into the corresponding eigenstate ¢(A(t)), with a phase
unambiguously related to that of ¢(A(0)). In other words, we may define

Tt
P(A(L))= 1lrim exp[—i J. ds H(A(s/ T))]t//(/\ (0)). (2.5.2)
>0 0

The phase of (A(¢)) has the uninteresting component
exp[—in:) ds’ E(A(s"))], which we will remove by making an additive
redefinition of H(A), so that E(A)=0. But the remaining phase has
interesting properties that were first studied by Berry [52].

To discuss this phase, it is convenient to introduce reference wavefunc-
tions ¢(A) which are eigenstates of H(A) with unit normalization,

H(A)p(A)=0, (6(A),8(A))=1; (2.5.3)

¢(A) has a phase which is chosen arbitrarily but varies smoothly with
A, at least locally. The phase of (A (?)) can then be measured relative
to that of ¢(A(2)); we may write

YA@)=UQ() (A1), (2.5.4)

where U is a pure phase. Because we have eliminated the uninteresting
part of the phase of ¢, ¢ changes only when the basis of eigenmodes of
H rotates. We therefore have (¢, diy/dt) = 0; the infinitesimal change in
Y is always orthogonal to y. It follows that

UldU=(¢,de), - (2.5.5)
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and U may be expressed as

U(A(l))=exp<i.[ A) U(A(0)). (2.5.6)
Lo

Here the one-form
A=—i(d,do) (2.5.7)
is real, since (¢, ) =1, and it is integrated along the curve C defined
by A(t). o
Both the one-form A and the phase U depend on our choice of

reference wavefunctions ¢(A). If we make a redefinition of the phase
of ¢(A) of the form o '

d(A)> 2(A)p(A), (2.5.8)

then U and A are tréﬁsfbrmed as 7
UA(1)) > 2A())U(A(1)), (2.5.9)
A->A-iN71dN. (2.5.10)

We see that the freedom to redefine the phase of ¢(A) may be regarded
as a U(1) gauge freedom, and A behaves just like an Abelian gauge field
on the manifold M.

Since the change in the phase of ¢ defined by adiabatic transport
along an open path in M evidently depends on the coordinate system
in which we express the phase, it tells us nothing about the intrinsic
“geometry” of the ¢(A)’s. What has geometrical meaning must be
independent of coordinates. Such a quantity is the change in the phase
of ¢ defined by adiabatic transport around a closed path C, given by

exp(i i: A), (2.5.11)

which is invariant under the gauge transformation (2.5.8). By Stokes’
Theorem, this can also be written as

exp(i J F) = exp(J (do, dd))), (2.5.12)

where S is a surface in M bounded by the closed path C.

Of course, the adiabatic phase, or ‘“Berry phase” given by eq. (2.5.12)
must not depend on the choice of the surface S that is bounded by C.
The difference between any two surfaces is a closed surface, and we
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conclude that

J F=2an, (2.5.13)
s

where S is any closed surface in the manifold M, and n is an integer.
Equation (2.5.13) is just the Dirac quantization condition, which we have
found to arise in ordinary quantum mechanics in a surprising way.

When will the integer n in eq. (2.5.13) be nonzero? Obviously, it can
be nonzero only if the surface S cannot be contracted to a point in M.
But the existence of such noncontractible surfaces in M is not untypical.
The Hamiltonions in a family H(A) generically have degeneracies on
surfaces of codimension three. To understand this, one notes that as two
energy levels closely approach each other, they are well described as an
effective two-level system. A general two-by-two Hermitian matrix is
specified by four parameters, while a two-by-two Hermitian matrix with
two degenerate eigenvalues is specified by one parameter, so three condi-
tions must be imposed to induce two levels to cross. We thus see that
the values of A for which H(A) has level crossings generically occur at
isolated points in a three-dimensional parameter space, and that a two-
dimensional surface in the parameter space may enclose one or more of
these degenerate points. But adiabatic transport becomes ill-defined when
level crossings occur (the adiabatic theorem breaks down), so we must
exclude these degenerate points from our manifold M. Surfaces in the
parameter space which enclose points at which level crossing occur are
therefore noncontractible surfaces in M. '

As an example, consider a spin-3 particle in a magnetic field, with
Hamiltonian

H(x)=x- o, (2.5.14)

where the o,’s are the Pauli matrices. If we fix |x| =1, the Hamiltonia of
eq. (2.5.14) are parametrized by the points of a two-sphere, each rep-
resenting a direction in which the magnetic field might point.

The calculation of the integral in eq. (2.5.13) is simplified by the
rotational invariance of this problem. In the vicinity of the point x=
(0,0,1), H may be written as

H (8)=(:; i) (2.5.15)

where & = x+iy, and terms of higher order in & are dropped. H(e) has
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the eigenstate

qf:(s):(s}z), - (2.5.16)

to order g, and
F=-i(d¢,d¢p)=—4ide*ade=3dxnady. (2.5.17)

But dx A dy is just the area element on the sphere, and we evidently have
J F =2 (2.5.18)
S

Adiabatic transport of this two-level system apparently defines a
monopole of unit strength on the two-sphere. Note that the two-sphere
is noncontractible, because there is a level crossing at x=0.

This example has all the essential features of the general case. To
integrate F over an arbitrary two-dimensional suface we exploit the fact
that F is closed, dF =0, to replace the surface by a set of infinitesimal
spheres enclosing points in the parameter space where level crossings
occur. Levels generically cross two at a time, so in the vicinity Ao+ x of
the level crossing at Ay, H can be replaced by the general two-level system

H(x)=(Ey+a:x)II+o- Cx, (2.5.19)

to linear order in x. For this system the integral of F over the sphere
|x| = &, which takes discrete values, must be independent of E,, a, and
C, as long as det C does not cross zero. (For det C =0, the integral is
ill-defined, because there are level crossings on the sphere.) Thus, the
integral depends only on the sign of det C, and we see that

1
—J F=1, det C >0,
277 sphere
1
— J F=—1, detC<0. | (2.5.20)
27T sphere

(Making the reidentification é, > —é, changes the sign of both det C and
the integral.) Finally, for the general surface S, we sum up the contribu-
tions of all the infinitesimal spheres, and obtain

1
— J F= Y signdetC. (2.5.21)
S

2 T level
crossings
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Equation (2.5.21) is Berry’s Theorem [52]. It relates the “twist” of the
adiabatic phase on a two-dimensional suface in the space of Hamiltonia
to the level crossings enclosed by the surface.

This “twist” is a topological property of the “bundle” of wavefunctions
Y (A), and has nothing especially to do with adiabatic transport. It is an
intrinsic topological property of the bundle that can be revealed by any
smooth method of parallel transport. Berry’s Theorem tells us that if the
charge defined by the right-hand side of eq. (2.5.21) is nonzero for some
surface S, then it is not possible for /(1) to be a smooth function defined
globally on S.

Berry’s Theorem has some interesting applications. For one thing, it
is the basis for an illuminating discussion within the Hamiltonian
framework of the origin of gauge anomalies [54]. But I will not go into
that here.

2.5.2. Spin structures

Our second example of a “monopole” in an unusual context arises when
we consider the problem of introducing spinors on a manifold. Before
spinors are introduced on an n-dimensional manifold M, we first equip
the manifold with a vielbein, an oriented orthonormal frame that varies
smoothly on the manifold, and a connection that defines the notion of
parallel transport of the vielbein along a path in M. The vielbein may
be identified with the element of SO(n) that rotates it so that it coincides
with a standard frame, and the connection may be regarded as an SO(n)
gauge field. ~

If we are to introduce fermions, we must be able to associate with
each point in M not just an element of SO(n), but an element of the
covering group Spin(n). Only if this can be done consistently is it possible
to introduce a spinor field on M with the crucial property that the field
changes sign under a rotation through 2. It turns out that, on some
manifolds, there is a topological obstruction that prevents an SO(n)
bundle from being covered twice by a corresponding Spin(n) bundle.
Such a manifold will not admit spinors; it is said to lack a spin structure
[53].

This topological obstruction can arise on the manifold M if M contains
noncontractible two-spheres. To understand how it might arise, we may
consider a sequence of closed loops containing a common point that
sweep out one such noncontractible two-sphere; the sequence begins and
ends with a trivial loop of vanishing length (fig. 20). With each closed
loop, we may associate the element of SO(n) by which the vielbein is
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Fig. 20. A sequence of closed loops containing a common point that covers a two-sphere.

rotated under parallel transport around the loop. The two-sphere is a
sequence of loops with which we may thus associate a closed path in
SO(n). Suppose that this closed path is not contractible in SO(n). Then,
when lifted to the covering group Spin(n), it is an open path, running
from the element / to the element —/ in Spin(n). But this means that a
spinor must change sign under parallel transport about an infinitesimal
loop; it is impossible to introduce a smooth spinor field on the manifold.

Evidently, the manifold M will lack a spin structure if the loop in
SO(n) associated with any noncontractible two-sphere in M is a noncon-
tractible loop in SO(n). Whether the loop is contractible or not depends
only on the topology of M. It is independent of the method by which
the vielbein is continuously transported, because one method of con-
tinuous transport can be smoothly deformed into any other.

The relation of this discussion to the theory of magnetic monopoles
is clear. For any noncontractible two-sphere in the manifold M, the loop
in SO(n) described above is precisely the loop that classifies the topology
of the SO(n) connection on the two-sphere. If this loop is noncontractible,
the SO(n) connection is that of a Z, monopole.

The observation that, for a manifold without a spin structure, the
SO(n) connection on some noncontractible two-sphere is a “monopole”
connection suggests a cure for the problem. By introducing a Yang-Mills
or Abelian gauge field on this two-sphere, we might arrange for the
pathology in the transport of vielbeins on the two-sphere to be canceled
by a corresponding pathology in the transport of the other gauge degree
of freedom. For example, if we introduce an Abelian monopole field
with strength g on the two-sphere, then spinors can be consistently
defined on the two-sphere if they carry charges e satisfying the unusual
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Dirac quantization condition
2eg=n+3, (2.5.22)

where n is an integer. If a monopole of appropriate strength can be
introduced on each noncontractible two-sphere of M for which the
transport of vielbeins is pathological, then it is possible to define spinors
on M after all. M is then said to be endowed with a “generalized” spin
structure [55].

The question whether a manifold M possesses a spin structure can be
answered by explicit calculation in the case of a coset space M = G/H.
There is a noncontractible two-sphere in M associated with each noncon-
tractible loop in H that can be contracted to a point in G; that two-sphere
is generated by the mapping that shrinks the loop. What must be checked
is whether transport of the vielbein around the noncontractible loop in
H is associated with a noncontractible loop in SO(n) [53].

Exercise. Show that the manifold
CP2=SU(3)/U(2)

has no spin structure. (Consider the action of the minimal loop in U(2)
on the “broken” SU(3) generators.) For what values of m does CP"=
SU(m+1)/U(m) have a spin structure?

2.6. Global color

In this section we will pursue a question that appears at first to be of
merely mathematical interest: can a global gauge transformation be
defined in the vicinity of a magnetic monopole? Rather surprisingly, we
will find that the answer is no for a monopole with a non-Abelian
long-range field, unless the gauge transformation acts trivially on the
long-range field [56]. This result actually has some deep physical con-
sequences, as we will better appreciate when we consider in the next
section the semiclassical quantization of a classical monopole solution.

In order to address this question, we must define carefully what is
meant by first a local gauge transformation, and then a global gauge
transformation, in the vicinity of the monopole. We have seen that, to
specify the gauge field on a sphere surrounding a monopole, we can split
the sphere in half along the equator, and introduce smooth gauge poten-
tials Ay and A, on the upper and lower hemispheres. At the equator,
the two potentials must be related as in eq. (2.1.10) by a single-valued

— 11 134
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gauge transformation (2(¢) that takes values in H, the unbroken gauge
group. Now, if we wish to define a classical field or wavefunction for
some “charged” object that transforms under H, we follow the same
procedure again. Smooth fields fy and f_ are specified on the two
hemispheres that are required to satisfy the “matching condition”

fu(6=m/2, ) =) fL(0=7/2, ), (2.6.1)

where (@) is precisely the same gauge tranformation as appears in the
matching condition, eq. (2.1.10), for the gauge field. It is necessary that
the matching conditions for A and f are the same. The “function” f
cannot be smoothly defined globally on the sphere, but its discontinuity
at the equator is a mere gauge artifact, or coordinate singularity. (A
mathematician would call f a ““section” of a “nontrivial bundle”.) If one
performs a singular gauge tranformation that removes the discontinuity
of A at the equator (while introducing a discontunuity somewhere else
on the sphere), this gauge transformation must also make f continuous
at the equator.

Now, a smooth local gauge transformation of f on the sphere is a pair
of gauge transformations {2y, defined on the two hemispheres that
preserves the matching condition (2.6.1):

fu(6, &) > 02y(6, &) fu(6, ), upper(0<6<m/2),
1106, )> 02.(6, ) f1.(6, ), lower(w/2<0<m),
Qu(0=7/2, $)=Q($) (6 =7/2, $)27'(). (2.6.2)

This gauge transformation is smooth in the sense that it produces no
gauge-artifact singularities. A singular gauge transformation that removes
the discontinuity in A along the equator also removes the discontinuity
in 2 along the equator.

To define an infinitesimal global gauge transformation on the sphere,
one must specify a set of generators {T°} of the unbroken gauge group
H at each point (8, ¢) of the sphere. The statement that the transforma-
tion is global means that the commutation relations satisfied by the
generators are independent of the position on the sphere. However, this
condition does not remove the freedom to perform a local redefinition
(depending on 6 and ¢) of the generators of the Lie algebra that preserves
the structure constants, of the form

T*(6, ¢)=2(6, ¢)T°27'(6, ¢), (2.6.3)

where 3 € H and {T*“} is some standard choice of the generators. The
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redefinition of the generators determined by 2X is called an inner
automorphism of the Lie algebra of H, and all redefinitions that preserve
the Lie algebra and can be obtained by composing infinitesimal redefini-
tions have this form. The group of inner automorphisms is evidently
isomorphic to H/K, where K is the center of H, since the elements of
K, and only the elements of K, define trivial automorphisms.

A global gauge transformation of f on a sphere, like a local gauge
transformation, must be consistent with the matching condition (2.6.1).
To specify a global gauge transformation, we define inner automorphisms
on the upper and lower hemispheres,

TH(6, ¢) = 2u(6, $)T°ZG'(6, ¢), upper (0<6=<m/2),
80, ¢p)=2.(0, )T (6, ¢), lower(w/2<0=<), (2.6.4)
that satisfy a matching condition
TH(60=m/2,¢)=Q($)Ti(6=7/2, $)0 (), (2.6.5)

or
T*=35(w/2, $)2($)Z(7/2; ¢)
x TN (m/2, $)27 () Zu(m/2, d). (2.6.6)

But eq. (2.6.6) says that 23'(7/2, ¢)2(d)2(7/2, ¢) defines a trivial
automorphism; it must be an element of the center of H.

Now, suppose that H is semisimple (is a compact Lie group with no
U(1) factor). Then the center of H 1is discrete, and this element 2, of
the center must be a constant, independent of ¢; we have

Q(p)=Zy(8=7/2, )2 I (6 =7/2, ). (2.6.7)

If we now allow 6, the argument of Xy (2,) to vary smoothly from
0=m/2t0 6=0(6=) in eq. (2.6.7), we find that the loop 2(¢) can
be continuously deformed to a point; it has winding number zero. We
conclude, if H is semisimple, that a global H transformation can be
performed on a sphere only if the sphere encloses no magnetic charge.
In the vicintiy of a non-Abelian magnetic monopole, a global non-Abelian
gauge transformation cannot be implemented [56].

If we try to implement global gauge transformations in some subgroup
H' of H, eq. (2.6.6) tells us that we can succeed only if the loop £2(¢)
in H can be chosen to commute with H'. In other words, there must be
a gauge in which the H' rotations leave the long-range magnetic field of
the monopole intact. For a monopole, like the SU(5) monopole, that has
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an SU(3) .10, magnetic field, only the gauge transformations in an SU(2) x
U(1) subgroup of SU(3)..0r can be implemented globally.

2.7. Semiclassical quantization and dyons

Up to now, we have treated the monopole as a classical object. It is time
to consider its quantum mechanical properties. Our analysis of these
properties will be carried out in the semiclassical expansion, a systematic
expansion in powers of #. ,

To begin with, we consider the SO(3) gauge theory discussed in section
2.3. It is convenient to rescale the fields, so that the Lagrangian can be
rewritten

1
L=> [—3FLF*" +3D,@°D*®° —§(ms/ my)(P°D* — mi)*],
(2.7.1)

where the gauge coupling e has been scaled out of F,, and D,®. The
parameter ', normally set equal to one, multiplies the whole action.
Thus, # can be absorbed into e?, and we see that the semiclassical
expansion is an expansion in e’ with my and mg fixed. In the classical
limit # - 0, the size of the monopole core remains fixed while its mass
diverges like 7",

The lowest order in the semiclassical expansion is order e™2; the
classical core energy and Coulomb energy of the monopole are of this
order. To go beyond lowest order, we fix the gauge somehow, and express
each field as a sum of a classical background field (the monopole solution,
a local minimum of the Hamiltonian) and a fluctuating quantum field;
then we expand the Hamiltonian in powers of the quantum fields [39].
The first quantum corrections, of order e°, are obtained by expanding
to quadratic order in the quantum fields; this is equivalent to doing free
field theory in the classical monopole background, and the eigenstates
of the quadratic Hamiltonian can be interpreted as meson states in the
vicinity of the monopole. The energies of these are the frequencies of
small oscillations about the monopole solution. These frequencies can
depend on my and mg, but must be independent of e, which can be
scaled out of the classical action. In higher order in e, the quantum fields
interact, and the analysis becomes more complicated. v

Another complication occurs if, in the expansion to quadratic order
in the quantum fields, there are zero-frequency modes. Such zero-
frequency modes should be anticipated if there are unbroken exact
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symmetries that act nontrivially on the classical monopole solution. Then
the time-independent monopole solutions form a degenerate set, and the
zero-frequency modes are infinitesimal displacements in the manifold of
degenerate solutions.

For example, the monopole solution is not translationally invariant;
therefore, it has translational zero modes. The translational modes are
easily quantized. To obtain eigenstates of the Hamiltonian, we construct
states that transform as irreducible representations of the translation
group; these are plane waves carrying a momentum p. For fixed p, the
energy of a monopole plane wave is 0O(€e?), because the monopole mass
mis O(e™?):

E,=Vm*+p’=m+p*/2m+--- =m+0(e?). (2.7.2)

If the classical monopole solution were not rotationally invariant, it
would have a moment of inertia of order e 2, and rotational excitations
with energy of order e>. But, because the monopole solution is rotationally
invariant, there are no such rotational excitations. (More precisely, the
monopole is invariant under a spatial rotation combined with a global
SO(3) gauge transformation, which is enough to ensure the absence of
rotational excitations.)

A soliton can have zero-frequency modes associated with internal
symmetries as well as space-time symmetries. In fact, the monopole of
the SO(3) gauge theory is not invariant under a global U(1)., charge
rotation, because the charged fields W™ are excited inside the monopole
core. (We can see that W* must be excited by an argument closely
analogous to that used at the end of section 1.5 to show that charged
fields are excited inside an Alice string.) To quantize the charge rotation
degree of freedom, we diagonalize the Hamiltonian by constructing
irreducible representations of U(1).n; that is, states with definite electric
charge Q. Thus, the quantum mechanical excitations of the fundamental
monopole include dyons, particles that carry both magnetic and electric
charge [57]. These dyons arise automatically upon the semiclassical
quantization of the global charge rotation degree of freedom of the
monopole. : '

Before describing the computation of the dyon spectrum, we should
pause to reexamine the claim that the classical monopole solutions form
a degenerate set related by U(1).n, charge rotations. This claim sounds
suspicious, because a U(1).n rotation is a gauge transformation. If we
carry out canonical quantization in the gauge A,=0, we ordinarily say
that the physical states must be invariant under time-independent gauge
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transformations. But in fact we must distinguish between local gauge
transformations, with finite support, and global gauge transformations,
which act nontrivially at r-co. The Gauss’ law constraint requires phy-
sical states to be invariant under local gauge transformations, but under
a global gauge rotation by an angle &, a physical state with charge Q
acquires the phase €'°%. Therefore, a classical monopole solution can
sensibly be regarded as a superposition of physical states of definite
electric charge, and two monopole solutions related by a global charge
rotation are distinct states in the physical Hilbert space, degenerate at
the classical level. :

There is another, less formal, way of explaining why a monopole
carries a U(1)., collective coordinate [58]. The configuration space for
the classical dynamics of a gauge theory is the space of field configurations
modulo gauge transformations; therefore two monopole configurations
related by a global U(1),r, rotation ought not to be considered as separate
objects. Suppose we consider, though , not a single monopole, but a
static monopole-antimonopole pair. This static configuration is an
approximate classical solution if the monopole and antimonopole are
very heavy and widely separated. What collective coordinates are needed
to characterize the space of monopole-antimonopole “solutions”? We
can construct such a solution by patching together a monopole solution
and an antimonopole solution. Both the scalar field (order parameter)
and gauge field must match where we do the patching. But if we perform
a relative gauge rotation of the monopole and antimonopole by an
element of the unbroken gauge group H, this rotation does not disturb
the scalar field far from the poles, and the fields will still match provided
that the gauge rotation acts trivially on the long-range gauge field of the
monopole. Given one monopole-antimonopole pair, we can cut it in two,
rotate the monopole relative to the antimonopole, and glue it together
again, thus obtaining a new pair that is not merely a gauge transformation
of the original pair. Therefore, a relative global H rotation is a proper
collective coordinate of a monopole-antimonopole pair. Furthermore, if
the monopole has a non-Abelian long-range field, the only H rotations
that are sensible in this connection are those that leave the long-range
field undisturbed. And, as we saw in the last section, these are precisely
the global gauge rotations of an isolated monopole that can be imple-
mented.

We can construct a spectrum of excitations of the monopole-anti-
monopole pair by projecting out states that transform as irreducible
representations of the group of global gauge transformations that serve
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as collective coordinates for the pair. Since the excitation energy is
localized near the pole, we may as well forget about the antimonopole
and construct the excitations of an isolated monopole.

Having agreed that a charge rotation is a sensible collective coordinate,
we must now, in order to find the energies of the dyon excitations,
compute the moment of inertia associated with such a rotation. This
computation involves subtleties associated with gauge invariance that
must be dealt with carefully [59-61], but let us at first ignore these
subtleties, to get a feel for how the computation works.

For purposes of illustration, consider a field theory involving a real
scalar field ¢ that has a static soliton solution ¢ = ¢,(x), and suppose
that there is a compact “isospin” symmetry of the theory that acts
nontrivially on the soliton, so that there is a compact manifold of
degenerate soliton solutions. We wish to quantize the “motion” of the
soliton on this compact manifold. An infinitesimal motion on this mani-
fold has the form

d(x, 1) = (1+£4(8) T?) do(x), (2.7.3)

where the T%’s are (antihermitian) generators of the isospin symmetry
group. Since ¢ (x, t) is the soliton solution at each fixed ¢, only the kinetic
terms in the action have a nontrivial dependence on the trajectories
¢(x, t). If the kinetic term is the conventional one for a real scalar field,
the Lagrangian, after a suitable field rescaling, is

1
L= J d3x§§ (30)* =31%E,8p, I =z _[ &x (T*Go)(T o).
(2.7.4)

This is the effective Lagrangian that describes the dynamics of the isospin
rotator degree of freedom of the soliton. It is the Lagrangian of a rigid
body in isospin space.

To canonically quantize, we construct the Hamiltonian

CH=3p*(I Nap® p*=1%,. (2.1.5)

Since the isospin group is compact, the &’s are periodic variables, and
the p’s have discrete eigenvalues. H can be expressed in terms of the
Casimirs of the isospin group.

In the case of the monopole of the SO(3) model with unbroken group
U(1)em, the Hamiltonian is

1 2
=57 Q% (2.7.6)
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where Q is the electric charge operator (in units of e); this is the
Hamiltonian of a planar rotor. The group U(1)., is compact and the
eigenvalues of Q are integers. (Q is actually the generator diag(3, —3) of
SU(2), but dyons with half-odd integer Q do not occur, because the
monopole solution is invariant under the center of SU(2); thus,
exp(i27rQ) =1 acting on the monopole.) Applying dimensional analysis
to the rescaled Lagrangian (eq. (2.7.1)), we see that I is of order 1/ ¢*my.
Thus, the dyon excitations are split from the monopole ground state by
an amount of order (eQ)*my, the Coulomb self-energy of an electric
charge eQ localized on the monopole core of radius m3'.

For a monopole with a non-Abelian long-range field, the gauge rota-
tions in the subgroup H' that can be globally implemented rotate the
core of the monopole without disturbing the long-range field, and the
associated semiclassical excitations are charge excitations localized on
the core. There is no spectrum of dyon excitations associated with the
rotations in the gauge group H that act nontrivially on the long-range
field because these excitations cannot be supported by the monopole
core. They are carried out to large distances by the non-Abelian magnetic
field, and are lost in the gluon continuum. They do appear explicitly,
however, in the excitation spectrum of a widely separated monopole-
antimonopole pair, with energy splittings inversely proportional to the
separation of the pair [58]. '

Having now understood the basic procedure for quantizing the collec-
tive coordinates of a soliton, let us consider more carefully how the
inertia tensor is computed in a gauge theory. We will work in the temporal
gauge A,=0, and suppose for definiteness that the scalar field @ is in
the adjoint representation of the gauge group. The static classical
monopole solutions form a degenerate set; we denote one representative
of this set by

A=Anpon(x), D= Ppoq(x). (2.7.7)

The motions in the manifold of degenerate monopole configurations that
we want to quantize are (time-dependent) global gauge transformations
of the form

A(x, 1) =07 (x, 1) Apon(%)2(x, t) —12 ' (x, )VQ(x, 1),
Ag(x, 1) =0, D (x, 1) =07(x, ) Pon(x)2(x, 1). (2.7.8)

The statement that (2(x, t) is a “global” gauge transformation does not
mean that {2 is independent of x; it merely means that {2 acts nontrivially




314 J. Preskill

at spatial infinity, that
lim Q2(x, t)=02(1) (2.7.9)

is a nontrivial function of &

What makes the semiclassical quantization of solitons subtle in a gauge
theory is that we must consider only those motions on the manifold of
soliton solutions that preserve the physical subspace of the Hilbert space.
In other words, the motion eq. (2.7.8) is required to be consistent with
the Gauss’ law constraint. This condition determines the function £(x, ),
given its asymptotic behavior, eq. (2.7.9) [60, 61].

For the purpose of finding {2(x, t), and of calculating the effective
Lagrangian for the global gauge rotations, it is quite convenient to observe
that the motion eq. (2.7.8) is gauge equivalent to

A(x, t) =Amon(x), Ao(x, 1) =i(§; 0(x, t))ﬂ"(x, 1),

D(x, t)= @men(x). (2.7.10)

(Equation (2.7.8) is not a gauge transformation of the static monopole
solution, if £ depends on t.) Now all the time dependence is in Ao, and
an effective Lagrangian for the motion is found by plugging into eq.
(2.7.1); we obtain

L=;15 J d’x tr[(DmonAo)z—[Ao, @]2] +ene, (2.7.11)

the remaining terms being time independent.
The Gauss’ law constraint may be written

D'Fyi = —DonAo=Jo=~[P,[ D, Acll. (27.12)

This equation tells us how to extend the function 2(x, ¢) from its value
£(t) at spatial infinity down into the core of the monopole. Furthermore,
integrating eq. (2.7.11) by parts, and invoking eq. (2.7.12), our effective
Lagrangian may be rewritten as a surface integral,

1

0
L=_2 J dn r2 tr(Ao_Ao). (2.7.13)
e Ji—o or

(To obtain eq. (2.7.13), we have used the fact that the long-range tail of
the monopole vector potential satisfies 7+ Apon=0.)

— T113A
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The asymptotic behavior of A, at spatial infinity is
. d
Ag(x, 1) —2i tr[)\“(-d—t- Q(t))!)“(t)] =w*, (2.7.14)

where A“? is a generator of the gauge group, and @ is the corresponding
“angular velocity”. Corrections to this asymptotic form can be expanded
in powers of 1/r; the leading correction in 1/r is needed to compute eq.
(2.7.13). Since eq. (2.7.12) for A, is linear, its solution is linear in
and must have the form

ab
Al = (aab—%+- : -)wb. (2.7.15)

Finally, the effective Lagrangian takes the form [60, 61]
L=3I",w,, I® = c?, ' (2.7.16)

the inertia tensor I*° may be determined by solving the Gauss’ law
condition eq. (2.7.12). The quantity c* has the dimension of length, and
will turn out to be a tensor of order one multiplying my’, the size of the
monopole core.

As we have seen, the gauge rotations of the monopole are restricted
to the subgroup H' of the unbroken gauge group that is globally
implementable. The Hamiltonian can be expressed in terms of the
Casimirs of H', and can be diagonalized by constructing states in irreduc-
ible representations of H'. I will not explicitly calculate the Hamiltonian
here; we now know in principle how it can be done. But it is helpful to
consider the qualitative features of the dyon spectrum for a few examples.

2.7.1. SU(3) monopole
This is the example section 2.4.1, with the pattern of symmetry breakdown

G=SU(3)» H=[SU(2)xU(1)])/Z,. (2.7.17)
The minimal monopole has magnetic charge

Qm=diag(1, 0, -1). (2.7.18)
H' is the subgroup of H that commutes with Qy,; it is

H'=U(1)xU(1). : (2.7.19)

This monopole has a long-range SU(2) gauge field, and only a U(1)
subgroup of SU(2) leaves the long-range field intact.
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One might naively expect the monopole to have two collective coordin-
ates, but in fact only one of the two U(1)’s in H' acts nontrivially on
the monopole. The minimal monopole of this SU(3) model is just the
*t Hooft-Polyakov SO(3) monopole embedded in an SU(2) subgroup of
SU(3), and the U(1) that commutes with this SU(2) subgroup leaves the
monopole solution invariant. Therefore, the only charge carried by the
dyons is the U(1) charge generated by

Q'=diag(1,0, -1), (2.7.20)
and the dyon excitation energies have the form
Edyon= aeszQ'zs . (27.21)

where Q' is an even integer and a is a numerical constant of order one.
The first dyon excitation has the H' quantum numbers of the heavy
W-boson. In particular, under the U(1) generated by

Q=diag(3,3, -1), (2.7.22)

it carries charge 2. All dyons have Q an integer multiple of 3 because
exp(37iQ) is an element of the center of SU(3), which leaves the
monopole solution invariant. Each dyon is constructed as a coherent
superposition of classical solutions with different charge onentatlons
and hence exp(37i1Q) must be 1 acting on any dyon state.

2.7.2. Nonminimal monopole
Consider, in the same model as before, the monopole with magnetic
charge

Qum=diag(1, 1, -2). | (2.7.23)

This is a “nonminimal monopole” associated with a loop in G/H that
is homotopic to the composition of two minimal loops. Supposing that
this monopole is stable against decay into two minimal monopoles, what
are its dyon excitations?

Now the long-range field of the monopole is preserved by the unbroken
SU(2), and H'= H. The dyon excitations can be assembled into irreduc-
ible representations of H, and have excitation energies [61]

Eayon= *my(al(I+1)+bQ?), (2.7.24)

where a and b are numbers of order one. By the same reasoning as
above, Q is an integer multiple of 3/2, and I+ Q must be an integer if
the multiplet is to provide a single-valued representation of [SU(2) X
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U(1)]/Z,. Of course, the dyon spectrum of this nonminimal monopole
is qualitatively quite distinct from the dyon spectrum of the minimal
monopole. For one thing, the excitations in the nonminimal case are
(2I+1)-fold degenerate, while all excitations in the minimal case are
nondegenerate. :

2.7.3. SU(5) model
This is the example of section 2.4.2, which closely resembles the example
of section 2.4.1. The pattern of symmetry breakdown is

G=8U(5)» H=[SU(3). X U(1)eml/ Zs, (2.7.25)
with U(1),,, generated by
Qe = diag(5, 3,3, 0, =2). (2.7.26)
The minimal monopole carries the magnetic charge
- Qm=Q’'=diag(0,0,1,0, -1). (2.7.27)
The subgroup of H that commutes with Q) is
=SU((2)x U(1)xU(1), | (2.7.28)

but just as in the previous example, only a single U(1) € H', that generated
by Q’, acts nontrivially on the monopole. The dyon spectrum is again
given by eq. (2.7.21). Now exp(37iQ.m) leaves the monopole solution
invariant, and all dyons therefore carry electric charge Q. that is an
integer multiple of 3.

2.8. Catalysis

We have seen that dyons emerge when we carry out the semiclassical
quantization of a classical monopole solution. The existence of this tower
of dyonic excitations of the monopole has very important consequences
when we consider the scattering of fermions off monopoles. Indeed, we
will see that monopole-fermion scattering has a truly spectacular
property. When a monopole and a fermion collide at an energy much
less than the inverse size my of the monopole core, the outcome is strongly
dependent on the structure of the core. In particular, in a typical grand
unified theory, there are heavy gauge bosons with masses of order my
and couplings that violate conservation of baryon number; in such a
theory the cross section for baryon number changing scattering of a
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fermion off a monopole at low energy is large, and independent of my
[62, 63].

This result seems to violate a cherished principle of quantum field
theory, the decoupling principle, which asserts that the effects of very-
short-distance physics must be suppressed at low energy by a power of
the short-distance scale. In this respect, monopole-fermion scattering
appears to be a unique phenomenon.

We can begin to understand some of the peculiar features of monopole-
fermion scattering by considering the classical motion of a charged
particle with electric charge e and mass m in the background of a magnetic
monopole with magnetic charge g. If the monopole is fixed at the origin,
and r is the position of the charged particle, then the classical equation
of motion is

mi'= eg - (2.8.1)

Using the equation of motion, one easily verifies that the quantity
J =mrxr—egt (2.8.2)

is a constant of the motion. J is just the usual angular momentum, except
for the peculiar extra term — egf, which can be interpreted as the angular
momentum stored in the electromagnetic field.

Since the “usual” angular momentum is perpendicular to r, we have

J- F: —eg. (2.8.3)

From the conservation of angular momentum J we conclude that the
trajectory of the charged particle is confined, not to a plane as in a typical
central force problem, but to a cone with its apex at the monopole and
opening half angle 8 such that cos 6 =|eg|/J. The magnitude v of the
velocity F of the monopole is also a constant of the motion, because the
magnetic force is always perpendicular to 7. The square of J can be
written as

J?>=m?v’b*+ eg?, (2.8.4)

in terms of the “instantaneous” impact parameter b. We conclude that
b is a constant of the motion too; in particular, the initial impact
parameter is the same as the distance of closest approach of the charged
particle to the monopole.

In the limit of small b, J approaches |eg|, and the cone on which the
trajectory lies becomes very narrow; the scattering angle approaches m,
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and the trajectory winds many times around the axis of the cone [64].
But if b is exactly zero, then the charged particle experiences no force
at all, and the scattering angle is zero. The particle passes through r=0,
where J is ill-defined, and conservation of angular momentum breaks
down. Thus, the limit of zero impact parameter is very singular. One
might expect to see a remnant of this odd classical behavior in the
quantum theory; if so, it seems that only the lowest partial wave is likely
to be afflicted.

In order to perform a partial wave analysis of monopole-fermion
scattering, we must find the eigenstates of the operators J %2 and J,, where
J is the operator

J=rx(p—eA)—egf, (2.8.5)

and A is the vector potential of the monopole. This task is delicate,
because A cannot be expressed as a nonsingular function. It is convenient
to adopt the strategy of sections 2.1 and 2.5 and introduce potentials Ay
and A, defined on the upper and lower hemispheres that obey a nontrivial
matching condition. With A given by eq. (2.1.12), one finds [37]

0

JE‘-"—ig—% upper (0=< =< /2),
0
Jh=—i £+ g, lower(m/2<0<m), (2.8.6)

where the notation g = eg has been introduced. A wave*“function” that
is consistent with the matching condition and is an eigenstate of J, with
eigenvalue m takes the form

e'™*D?  upper (0<6=<m/2),

9 f4 , |
Y?,. ,,m(e){e,(,,,_m, lower (m/2< 0< ). (2.8.7)

Here f7,,(0) is a nonsingular function on the sphere, to be determined
by the requirement that Y7, is an eigenstate of J 2 with eigenvalue j(j+1).

The Dirac quantization condition requires that q is a half-integer, and
single-valuedness on each hemisphere requires that m —gq is an integer.
Since the components of J obey the usual angular momentum algebra
(check this!), we know that, for given j, m takes the values j, j—1,..., —J.
Thus, j— g is an integer, and we conclude that the angular momentum
j of the “monopole harmonic” Y7, is an integer or half-odd-integer
depending on whether g is an integer or half-odd-integer. Moreover,
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because
J2=[rx(p-ed)+q* (2.8.8)

is the sum of two positive pieces, it is manifest that j(j+1) > g°. Indeed,
by solving the eigenvalue problem for f},,, one finds that j can take the
values [37]

j=lql,lql+1,1q]+2,.... (2.8.9)

The quantum mechanics of a charged spin-0 boson interacting with a
magnetic monopole turns out not to be very exciting; a centrifugal barrier
prevents the charged particle from penetrating to the magnetic pole [39].
Much more interesting is the case of a spin-; fermion. For a spin-3
fermion, the angular momentum becomes

J=rx(p—eA)-gf+ic, , (2.8.10)

and the eigenstates of J* and J, are easily constructed by addition of
angular momentum. For example, if ¢ =3, the j = 0 angular wavefunction

1S

=01 Y%f%-l/z)

n”°=—( 12 (2.8.11)
V2\-Y2

where the Y’s are monopole harmonics.
The Dirac Hamiltonian for a massless spin-3 fermion in the field of
the monopole is :

H=a-(—iV—eA). (2.8.12)

If we use the representation

0 o 1 0 0 1

then the eigenstates of H in the lowest partial wave j = |gq| —3 have the form

x1(r)mi(6, ¢)
1f x:(r)n5(6, &)
r| x2(r)ni(6, ¢) |’
x2(r)mi(6, &)

and the Dirac equation Hy = Ey reduces to the two-component radial

W(r, 6, ¢)= (2.8.14)
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equation [65]

. d :
HX(")=“I%5;‘ Ysax(r)=Ex(r). (2.8.15)

Remarkably, the monopole vector potential has disappeared from the
problem; the radial equation describes a free (1+ 1)-dimensional spinor
propagating radially.

The solutions to eq. (2.8.15) can be chosen to be eigenstates of s,
and the eigenvalues +1 of s can be identified with the (3 +1)-dimensional
helicity of the fermion. Strangely, the helicity of a solution is correlated
with whether it is an incoming or outgoing wave. If g> 0, we have

vs=+1, X(r)oceiE', outgoing,

vs=-1, x(ryce ™, incoming. (2.8.16)
(The helicities of the solutions are reversed if g <0.) The cause of this
peculiar asymmetry of the helicity states in the lowest partial wave can
be traced back directly to the peculiar extra term —g7 in the angular
momentum of a charged particle in the field of the monopole (fig. 21).
An incoming (outgoing) fermion must have negative (positive) helicity
to be in the lowest partial wave, with j =g —3.

ge -egr <=@=> Spin
g ’

ge Spin <=—> eqT
e

Fig. 21. In the field of a magnetic monopole, whether the spin of a fermion with minimal
angular momentum points toward or away from the monopole is correlated with the charge
of the fermion. :

To study scattering, we must determine how the incoming and outgoing
waves match up at the origin. However, both solutions are singular at
the origin, the location of the pole, and the Dirac equation provides no
criterion for matching up the incoming and outgoing waves. Therefore,
the Dirac Hamiltonian is not self-adjoint; probability fails to be conserved
unless the Hamiltonian is suitably augmented by a boundary condition
at the pole that relates the incoming and outgoing waves [66].
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In other words, the Dirac Hamiltonian actually describes a family of
quantum mechanical systems, distinguished by different boundary condi-
tions satisfied by the fermions at the magnetic monopole. The boundary
condition must be specified before the outcome of a scattering event can
be determined. For example, consider a four-component Dirac fermion,
the (massless) electron, scattering from a monopole, with g = —3. In the
lowest partial wave, there are two possible incoming states and two
possible outgoing states, namely

incoming: ef,¢ex,

outgoing: €g,€r. (2.8.17)

An incoming left-handed electron ep will emerge from the collision as
a right-handed electron ex or a left-handed positron e;, in some linear
combination determined by the boundary condition. No choice of the
boundary condition can conserve both electric charge and angular
momentum, although these are both good symmetries of the Hamiltonian.
The monopole transfers either charge or angular momentum to the
monopole.

The need for a boundary condition to determine the final state of an
electron scattering from a point monopole is the crucial feature of
monopole-fermion scattering that results in a violation of the decoupling
principle. The decoupling principle leads one to expect that the amplitude
for monopole-fermion scattering at energies much less than the inverse
size of the monopole core does not depend on the structure of the core,
except for power corrections that vanish as the size of the core goes to
zero. Up to power corrections, the amplitude should be calculable in a
low-energy “‘effective theory” in which the core is regarded as pointlike,
and the properties of the core need not be specified. This expectation
fails because monopole-fermion scattering is inherently ambiguous when
the monopole is pointlike. Information about the core of the monopole
survives in the low-energy effective theory as a boundary condition
needed to specify the outcome of a scattering event. A low-energy fermion
in the lowest partial wave can penetrate to the monopole core, and be
strongly influenced by its structure. In particular, the boundary condition
may violate a symmetry (like baryon number) that would otherwise be
a good symmetry of the low-energy effective theory.

One sees from the above discussion that the analysis of the scattering
of a low-energy fermion by a nonsingular 't Hooft-Polyakov monopole




Vortices and monopoles 323

divides naturally into two steps. In the first step, we determine, by
considering in the semiclassical approximation the interaction of a fer-
mion with a monopole of finite core size, the appropriate boundary
conditions to impose as the core effectively shrinks to zero radius. In the
second step, we study the interactions of fermions satisfying the boundary
conditions with a point monopole, taking into account as fully as possible
the effects of fermion pair creation. But to justify and carry out this
procedure in detail, we must consider carefully how the semiclassical
expansion is formulated.

In the first nontrivial order of the semiclassical expansion, order e°,
the monopole field may be treated as a classical background field. To
this order, it should be legitimate to treat the scattering of a fermion
from a nonsingular monopole by solving the Dirac equation in the
monopole background. By solving the Dirac equation in the background
of an 't Hooft-Polyakov monopole, one finds that an incoming SU(2)
doublet fermion in the lowest partial wave emerges from the collision
with its helicity preserved, but with its electric charge flipped [67]. One
might have guessed this result without doing a detailed computation;
electric charge becomes ill-defined at the center of the classical hedgehog
solution, and the sign of the charge operator T- ¢ /|| flips as the core
is traversed. Furthermore, we have already found that the excitations of
the monopole that emerge upon semiclassical quantization are electrically
charged dyons, so it is plausible that the fermion transfers charge to the
monopole, exciting the dyon degree of freedom. It would have been
much more puzzling if we found that the fermion transfers angular
momentum to the monopole, since no rotational excitations of the
monopole were revealed by the semiclassical analysis.

On the other hand, there is something suspicious about the conclusion
that the fermion transfers charge to the monopole, producing a dyon
excitation. We wish to consider the limit of very low fermion energy E,
and when E is much less than the dyon excitation energy Egyon of order
e*my, it is absurd to say that the dyon degree of freedom is excited. The
problem is that, if we are interested in monopole-fermion scattering for
E < ¢*my, the semiclassical limit is not the proper limit to study. In the
semiclassical expansion, e’ is regarded as small and my and E are order
one; thus, in this expansion E is always formally much larger than Egyon,
which is why we were able to conclude in order ¢° of the semiclassical

_expansion that the dyon degree of freedom is excited.

If we are interested in monopole-fermion scattering below the thresh-

old for exciting the dyon, we should study, not the usual semiclassical
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limit, but a different limit [68],
e’ 0, Egyon~ €My =0, (2.8.18)

with the fermion energy E fixed. In other words, we must not neglect
the Coulomb energy of the dyon, even though it is formally small in the
semiclassical expansion. Fortunately, though, all other effects which are
formally of order e* can be safely neglected. The quantum fields are
localized on a scale of order E™', rather than my'; therefore the Coulomb
interactions of quantum fields with the monopole core and with each
other are small and can be ignored. Indeed, the only unconventional
eftect which must be retained in the lowest-order semiclassical investiga-
tion of the limit eq. (2.8.18) is the dyon self-energy. This is the crucial
observation that makes the analysis tractable.

For the purpose of the leading semiclassical approximation, the
monopole-fermion system can thus be described by a Lagrangian con-
taining three terms. The first term specifies how the fermions propagate
in the classical background field of the monopole. We will confine our
attention to the lowest partial wave, the only partial wave with a nontrivial
coupling to the monopole core. Thus, the fermion fields solve the free
radial Dirac equation ’

(i 4,2 ) x(r, 1) =0. (2.8.19)
lal

For a definite sign of (q/|q|)vs, x behaves like a free chiral fermion in
(1+1) dimensions; it is a right-mover for (q/|g|)ys=-+1 and a left-mover
for (g/|q|)ys=—1. In the lowest partial wave, a pair of four-dimensional
Weyl fermions with ys=1 and q/|q|= =1 may be described by a pair of
two-dimensional chiral fermions propagating on r e [0, c); the positive-
charge fermion becomes a right-moving (outgoing) fermion ¢*(r), and
the negative-charge fermion becomes a left-moving (incoming) fermion
(7). This pair of chiral fermion fields on the half line can be mapped
to a single right-moving fermion field ¢x(x) on the full line x € (—0, )
through the identification

Yr(x)=¢7(x), x>0, (2.8.20)
Yr(x)=¢ 7 (-x), x<O0. (2.8.21)

Thus, the first term in our Lagrangian becomes simply

o 9
L= J dx i¢;(5—t+5)—c) Yr. (2.8.22)
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The second term in our Lagrangian is the self-energy of the charge
rotor collective coordinate of the monopole. Denoting the charge orienta-
tion of the monopole by a periodic variable 6 with period 2, this term
has the form

L,=116% (2.8.23)

where I is a “moment of inertia” of order (e’my)™".

The third term in the Lagrangian is a coupling between the fermions
and the charge rotor 6. This coupling arises because the boundary
condition relating ¢ to ¢~ at r =0 depends on the charge orientation
of the monopole. For a standard orientation of the charge rotor (6 =0),
we can choose a phase convention for the fields so that the charge
exchange boundary condition is written

You(r=0)=¢p(r=0), 6=0. (2.8.24)

But if a global charge rotation by the angle 6 is now performed, the
phases of ¢s* and ¢~ are rotated on opposite directions, and the boundary
condition becomes

Yy (r=0)=ey(r=0). (2.8.25)

This boundary condition induces a coupling between the charge rotor 6
and the fermions in the lowest partial wave. Note that the structure of
the monopole core is essential to the derivation of this coupling, for it
is the structure of the core that determines that the charge exchange
boundary condition is appropriate.

Through the identification egs. (2.8.20, 21), the boundary condition
eq. (2.8.25) becomes

Ylx=0% )= Dy(x=07, 1). (2.8.26)

To incorporate this boundary condition into our (1+ 1)-dimensional field
theory, we add to the Lagrangian the coupling [68]

Ly=-6(1) J dx gi(x, ) f(x)Pr(x, 1), (2.8.27)

where f is a function with support in the small interval (—eg, €) that
integrates to one,

r fx)dx=1. (2.8.28)
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This coupling simulates the effect of the tiny monopole core. At low
energy, all frequencies are small compared to ¢!, and 6(¢) can be
regarded as nearly constant as the fermion traverses the interval (—¢, €).
Therefore, the equation of motion for ¢ derived from L+ Ls,

[E-i-—a-—i-ie(t)f(x):}z,b}{(x, 1)=0, (2.8.29)
a9t ox

has the approximate solution

Yr(x, t)=exp[—i9(l) r dxf(x)]dfo(x—t), (2.8.30)

from which follows
Ur(e, 1) =e O yYp(—¢, t —2¢). (2.8.31)

Equation (2.8.31) reduces to the boundary condition eq. (2.8.26) in the
limit of small e.
Having constructed the Lagrangian

L= L] + L2+ L3
0o 0 . ‘
= J dx igk(x, t)(§+§;+i()(t)f(x)> Yr(x, t)+316%, (2.8.32)

we are now almost ready to study the monopole-fermion system in the
limit eq. (2.8.18). But first we need to tinker with the Lagrangian a little.
At the classical level, our Lagrangian has two desirable properties: the
dynamical variable 6 that represents a charge rotation is a periodic
variable with period 27, and the Noether charge associated with a 6
rotation is a conserved quantity. Unfortunately, both properties are
spoiled by quantum effects in our (1+1)-dimensional field theory. To
restore these properties, we must add a suitable counterterm to the
Lagrangian.

To see that 6 is a periodic variable at the classical level, we perform
the change of variable

Yr~> e PPy, (2.8.33)

which is evidently equivalent to

0 () 0 (x) + g3, (28.34)




Vortices and monopoles 327

If we define

g(x)= r dx' f(x') -3, (2.8.35)

>

then we have
0> 0+ ¢. (2.8.36)
Furthermore, since

glx)=—3, x<-—¢, (2.8.37)
g{x)=+3 x>¢, | (2.8.38)

we see that the change of variable, eq. (2.8.33), acts trivially on ¢ outside
the interval (—¢, €) if ¢ is an integral multiple of 2} in particular, the
boundary condition is unmodified. Thus, the (classical) physics of this
model is left invariant by a 27 rotation of 6.

The Lagrangian eq. (2.8.32) is invariant under the transformation eq.
(2.8.33), accompanied by 8-> 6 —¢. There is an associated (classically)
conserved Noether charge

Qo = J dx Yh(x, Ng(x)Pr(x )+ Q,  Q=I6(1). (2.8.39)

Q... is just the sum of the fermionic electric charge and the electric charge
Q carried by the dyon. The conservation law says that charge lost by the
fermions is transferred to the monopole.

However, as we saw back in section 1.5, conservation of Q. is spoiled
by an anomaly. Equation (2.8.32) is the Lagrangian of a chiral fermion
in (1+1) dimensions coupled to the background electric field

eE(x, t)=—6(t) Ed;f(x). (2.8.40)

According to the anomaly equation, the fermionic electric charge density
satisfies

8, 08\ ., _eE__04df
(at+ax>"”"’{’“ (2.8.41)

(cf. eq. (1.5.13); eq. (2.8.41) holds if we define the composite operator
YLyg by, for example, covariant point splitting). We conclude that Q
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changes at the rate

. 6(1) d 6(1) J e L

= —— . —_— = — - 2.8.
Qu==5 0] dxe@ /=7 | /@, (284)
where an integration by parts has been performed in the last step. To
restore conservation of electric charge, we add to our model Lagrangian

the final term

3

L,=3C#? =53;J dx [f(x))% (2.8.43)

This term modifies the equation of motion for 6, increasing I6 so that
Q.o now vanishes.

The new term L, may appear to spoil the periodicity of 6, but in fact
it does not. The change of variable eq. (2.8.33) actually has a nontrivial
Jacobian associated with the anomaly, so that we need the counterterm
L, to ensure that physics at the quantum level is really unchanged by a
27 rotation of .

Finally, we have a (1+ 1)-dimensional model field theory that correctly
represents the interactions of a doublet of massless Weyl fermions at low
energy with an ’t Hooft-Polyakov monopole. Trivially generalizing to a
model with N identical fermion flavors, we have the Lagrangian [68]

L=J dxi § Yi(x, t)(3+i+ie(t) f(x))&,lfk(x)+%1(92-—%C62,
k=1 ot ox

C=—Jir dx [f(0)T (2.8.44)
27 J_,

It only remains to solve the model.
The 6 equation of motion derived from the Lagrangian eq. (2.8.44) is

e N
0=-|"a I GILx(x) - Co, (28.45)

where Q= I8 is the dyon charge, the momentum conjugate to 6. This
equation, together with the local anomaly equations

2 0\ ., o df —
8.3 __ 44 2.8.46
(at+ax) Vi 27 dx’ ( )

can be solved simultaneously for the ¢/Ly’s and Q. It is convenient to




Vortices and monopoles 329

introduce a variable

Jie(x, )= git(x, t)+%(-;—)f (x), | (2.8.47)

in terms of which these equations become
. V £ N
ORS J ax 3 f()ix )

1
(%+§;)jk(x, 1) =57 f(x)Q). ‘ (2.8.48)

Since jj, and YL, agree outside the core region —g <x <&, we may just
as well study the time evolution of ji as Yk to determine the flow of
fermionic charge into and out of the monopole.

Outside the core, j, propagates freely to the right. To solve for ji inside
the core, we may treat Q(t) as constant for the time that it takes to
traverse the core, obtaining

== 0+55 00 | ax s (28.49)
7. —&

Substituting back into eq. (2.8.48), we find

. N N
O == % jul-& =7 Q) (28:50)
k=1 wl

using eq. (2.8.28).

In eq. (2.8.50), the rate of change of the dyon charge is expressed as
a sum of two terms. The first term is the rate at which fermionic charge
flows into the monopole core. The second term arises solely because of
the anomaly, and can be viewed as the rate at which charge on the
monopole is disposed of by anomalous fermion production. If there is
no incoming flow of charge, the expectation value of eq. (2.8.50) becomes

d N
E(Q)= —Z;T—I(Q),- (2.8.51)

Hence a dyon excitation decays at-a rate [69] I' = N /41, that is compar-
able to the splitting 1/21 between dyon energy levels; the tower of dyonic
excitations is wiped out by fermion emission. (The factor N occurs
because the dyon emits all fermion flavors democratically.) From a
(3+ 1)-dimensional point of view, there is a strong expectation value of
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E - B near the core of a dyon that, due to the chiral anomaly, induces
fermion emission and rapidly causes the dyon to deexcite.

Since the monopole disposes of the fermionic charge deposited on it
on a time scale much shorter than E™', where E is the energy of an
incoming fermion, charge cannot accumulate on the monopole, and Q
is effectively zero. Therefore, the solution to eq. (2.8.50) is

4wl N
Q(t)=—— X Jil—¢,1). (2.8.52)
N k=1

Substituting back into eq. (2.8.49), we obtain
. ) x
e, )=ji(=e, )= L Ju(=&1). (2.8.53)
k=1

In any scattering process, the total fermionic charge that flows into or
out of the monopole can be found by integrating the currents,

ni = J dtji(—e, t), (2.8.54)
n{t= J dtj (e, t), (2.8.55)
and so we obtain [68]
nov = i 2 ]zv i (2.8.56)
k k N 2 [ 0.

Equation (2.8.56) is the main result of our analysis. It describes the
relation between the flavor quantum numbers of the initial and final
states in monopole-fermion scattering. This relation is determined by a
subtle interplay of the chiral anomaly and the boundary conditions
satisfied by the fermions at the monopole core.

If a single fermion of flavor k=1 is incident on the monopole in the
lowest partial wave, then the final state must satisfy

ngt=5,,—2/N. (2.8.57)

The nature of the final state evidently depends on N, the total number
of flavors. Let us consider a few special cases.

(i) N =1; n$"'=—1. In this case, an incoming ¢ emerges as the (Y)°
antiparticle of ¢ . In effect, the helicity of the fermion is flipped, which
is the only possibility consistent with conservation of electric charge.
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(Actually, an SU(2) model with any odd number of chiral fermion
doublets is known to be rendered inconsistent by a global anomaly [70],
so this N =1 model does not really exist.)

(ii) N =2, n{*'=0, n3"=—1. An incoming ¢, €merges as an outgoing
(¥r.)°. If we think of the two flavors of Weyl doublets as the left-handed
and right-handed components of a Dirac doublet, we may describe the
process as ¢~ ¢r; this is helicity flip again [62, 63]. (There may also
be, in this case as in those considered below, an indefinite number of
flavor-neutral fermion pairs in the final state.)

(iii) N=4; n{*'=1, n33,4= —1. Now we encounter something strange
and unexpected. What emerges from the collision of an incident fermion
with the monopole are not final state fermions of the usual sort, but
pulses of fermionic vacuum polarization with fractional fermion number
in each flavor channel [71, 72]. These excitations, called “semitons’’, are
allowed final states because the fermion masses have been neglected. If
the fermions really have masses, or are confined in hadrons, integer
fermion numbers are detected in the final state - an electron is either
there or it is not. Thus, the semitons must be destabilized by explicit
fermion mass terms (or confining interactions); they must be able to
evolve into states with integer fermion number over distance scales
comparable to the fermion Compton wavelength (or the confinement
scale).

The decay of a semiton into genuine final state fermions is a long-
distance process having little to do with the physics of monopole-fermion
interactions, and it is not yet understood in any detail. But we can get
a better idea of what types of processes are possible in monopole-fermion
scattering by considering appropriate initial states such that the final
states are conventional states with integer fermion number. For example,

if it = ni*=1, ni* = n =0, then eq. (2.8.56) gives nt=n"=—1,n"=
ns"* =0; the process
Ura¥r2™ (llf;a)c( '1/;,4)C (2.8.58)

can occur. Obviously, this process fails to conserve the flavor quantum
numbers.

It is evident that the chiral anomaly must play an essential role in the
above processes. Were it not for the chiral anomaly, the chirality and
flavor of a massless fermion would be preserved. The physics of the
monopole core is also essential; it determines what charge is transferred
by the incoming fermion to the monopole core. But the anomaly deter-
mines how the charge deposited on the core is subsequently disposed
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of. And only the anomaly, not the boundary condition at the core, changes
chirality and flavor.

The language of the previous paragraph implies that monopole-
fermion scattering can be described as a two-stage process. First, the
incoming fermion scatters off the monopole, producing a dyon excitation.
Second, the dyon decays to the ground state monopole plus some final
state fermions. However, we have already stressed that this language is
quite misleading. A low-energy incoming fermion is surely unable to
excite the very energetic dyon. The key role of the anomaly in the
scattering process nonetheless suggests a picture in which charge tem-
porarily resides on the monopole, and generates a radial electric field in
the vicinity of the core. The parallel electric and magnetic fields near the
core can then drive the anomalous production of fermions. How can this
picture be reconciled with the obvious fact that excitation of the dyon
is not kinematically allowed?

The answer is implicit in our analysis of the model eq. (2.8.44). We
derived in eq. (2.8.52) the relation

Q=——7J~—7, (2.8.59)

between the charge Q on the monopole and the incoming fermion current
J, where r is the size of the monopole core. The electric field near the
surface of the core is of order eQ/r3, and the anomaly equatlon predicts
that chiral charge is produced at the rate

(Qsy~e*N J d*r(E- B)~. (2.8.60)

The change in Qs integrated over time is therefore of order one. Since
J is of order the momentum p of the incoming fermion, we see that the
expectation value of Q is very small when p is far below the dyon
excitation energy I, reflecting the inaccessibility of the dyon excitation.
But the small charge Q persists for a long time p~', which allows the
cumulative effect of the anomaly to be sizable [73].

The analysis described above applies to processes catalyzed by the
't Hooft-Polyakov monopole of an SU(2) gauge theory, and only to
processes involving fermions in the doublet representation of SU(2). We
may be interested in fermions in other representations, or in models with
larger gauge groups. When the analysis is suitably generalized, some
qualitatively new features emerge. To appreciate one such feature, con-
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sider the nonminimal SU(3) monopole of section 2.7, with magnetic
charge

QM = diag(13 la _2)

If a right-handed fermion triplet interacts with the monopole, two mem-
bers of the triplet have g =3 and one member has g = —1 (with g defined
as in eq. (2.8.6)). Therefore, the modes that penetrate to the monopole
core are an incoming fermion with j=3 and two outgoing fermions with
J=0. Evidently, the boundary conditions satisfied by the fermions at the
monpole core must require that angular momentum is transferred to the
monopole; the dyon excitations in this model carry spin [73]. Indeed,
careful consideration of the semiclassical quantization of this monopole
shows that, although the static monopole solution is spherically sym-
metric, the time-dependent configurations that arise in the quantization
procedure are not spherically symmetric, and the excitations therefore
carry angular momentum [61]. Actually, if one wishes to demonstrate
that the dyons carry spin, it is much simpler to analyze the catalysis
process, instead of carrying out the semiclassical quantization procedure
in detail.

Let us apply our newly found understanding of monopole-fermion
scattering to a particularly interesting example, the SU(5) model. The
classical monopole solution lives in a particular SU(2) subgroup of SU(5),
and the appropriate boundary conditions for the fermions can be inferred
from our earlier discussion of the 't Hooft-Polyakov monopole. The
diagonal SU(2) generator is 3Q’ of eq. (2.7.27), and the SU(2) representa-
tion content of a single generation of fermions (the representation 10+ 5
of SU(5)) is readily seen to be the four doublets

J3 U, U, e’
(e")L’ (a)L’ (ﬁl)L’ (da)L’ (2.8.61)

plus singlets, where 1, 2, 3 are color indices. For 2q = +1, the top member
of each doublet (or the antiparticle of the bottom member) is an incoming
state with access to the monopole core. The boundary condition couples
each incoming fermion to the outgoing fermion that is the bottom member
of the same doublet. The U(1)o and U(1).,, charges transferred to the
monopole are precisely the charges of the minimal dyon found in section
2.7.

For the purpose of studying the monopole-fermion interactions, this
model reduces to an SU(2) model with four doublets, and the process
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eq. (2.8.58) found earlier becomes:

UL Uz ™ endag. (2.8.62)

That a monopole can catalyze this baryon number nonconserving process
was discovered by Rubakov [62] and Callan [63].

Accurate calculations of the rates of such baryon number changing
reactions are not easily performed, in part because the evolution of
semitons into “final state” quarks and leptons is not yet understood in
quantitative detail. But in the leading semiclassical approximation, the
reaction

Uy >3l wr dsg  er)+flavor-neutral pairs (2.8.63)

saturates the unitarity limit in the lowest partial wave. It is reasonable
to expect that the semiton intermediate state can evolve with probability
of order one into a final state with a baryon number different from the
initial state [74]. Thus, the baryon number changing cross section for a
quark of energy E scattering from a monopole is of order E 2 if E™
is much greater than the radius of the monopole core, and much less
than both the Compton wavelength of the quark and the size of a hadron.
It is also to be expected that adding more generations of fermions will
have little qualitative effect on the baryon number changing processes.
The main new feature in the many-generation case is that the boundary
conditions and hence the scattering amplitudes depend on generalized
Cabibbo-like mixing angles [75].

The baryon number nonconservation catalyzed by an SU(5) monopole
cannot be regarded as a consequence of the chiral anomaly; tr Q"*B
actually vanishes, where Q' is the charge carried by the monopole and
B is baryon number. The violation of baryon number really arises from
the boundary conditions satisfied by the fermions at the monopole core.
The boundary condition allows the baryon number transferred to the
monopole to be either —3 or +3. Thus, the dyon does not have definite
baryon number, and it is capable of mediating baryon number changing
processes.

There is a baryon number violating anomaly in the standard model,
but it is effective only if the electric or magnetic field has a component
in the Z° direction. (This anomaly generated baryon number noncon-
servation on the superconducting string of section 1.5.) It is possible to
embed the standard model in a grand unified theory such that the minimal
monopole carries a Z° charge, at least at distances from the monopole
core less than MZ'; an example is the Pati-Salam model. (See the exercise




Vortices and monopoles 335

at the end of section 2.4.) Indeed, in-the Pati-Salam model, baryon
number is a good classical symmetry, so the anomaly is the only possible
source of nonconservation of B. The B-changing processes catalyzed by
Pati-Salam monopoles that arise from the anomaly, like the processes
catalyzed by SU(5) monopoles that arise from B-violation at the
monopole core, have large rates completely unsuppressed by the tiny
size of the core [73,76, 77].

Exercise. By considering the boundary conditions satisfied by the fer-
mions at the core of a Pati-Salam monopole, infer enough about dyon
quantum numbers to show that anomalous production of baryon number
occurs in the vicinity of a Pati-Salam dyon.
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