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Inspired by natural cooling processes, dissipation has become a promising approach for preparing low-
energy states of quantum systems. However, the potential of dissipative protocols remains unclear beyond
certain commuting Hamiltonians. This work provides significant analytical and numerical insights into the
power of dissipation for preparing the ground state of noncommuting Hamiltonians. For quasi-free dissipative
dynamics, including certain 1D spin systems with boundary dissipation, our results reveal a new connection
between the mixing time in trace distance and the spectral properties of a non-Hermitian Hamiltonian, leading
to an explicit and sharp bound on the mixing time that scales polynomially with system size. For more general
spin systems, we develop a tensor network-based algorithm for constructing the Lindblad jump operator and
for simulating the dynamics. Using this algorithm, we demonstrate numerically that dissipative ground state
preparation protocols can achieve rapid mixing for certain 1D local Hamiltonians under bulk dissipation, with
amixing time that scales logarithmically with the system size. We then prove the rapid mixing result for certain
weakly interacting spin and fermionic systems in arbitrary dimensions, extending recent results for high-
temperature quantum Gibbs samplers to the zero-temperature regime. Together, these results show that
dissipation can be a powerful tool for ground state preparation, with potential applications across condensed

matter physics, quantum materials science, and beyond.
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I. INTRODUCTION

Ground state preparation is one of the most important
challenges in quantum many-body physics, quantum chem-
istry, and materials science. Quantum algorithms, such as
quantum phase estimation (QPE), quantum singular value
transformation (QSVT), adiabatic state preparation (ASP)
and their variants [1-8], offer a pathway to tackle chal-
lenging ground state preparation problems beyond the
capabilities of classical computers. Dissipative dynamics,
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such as Lindblad dynamics, provides a distinct approach to
state preparation. This approach evolves the system density
matrix under engineered dissipation and Hamiltonian
dynamics and encodes the target state as the stationary-
state solution of the Lindblad master equation.
Dissipative techniques, and state preparation methods
employing midcircuit measurements in general, have been
widely applied to prepare matrix product states, ground
states of stabilizer codes, spin systems, and other states
exhibiting long-range entanglement [9—19]. Compared to
traditional unitary quantum algorithms as well as adiabatic
algorithms, dissipative approaches offer certain inherent
robustness to noise, and may bypass the need for complex
initialization procedures, making them attractive for imple-
mentation on early fault-tolerant quantum devices [20-22].
However, many existing dissipative protocols are tailored
for highly structured and frustration-free Hamiltonians. For
instance, the ground state of the parent Hamiltonian of a
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stabilizer code can be efficiently prepared using either
quantum error correction protocols or dissipative dynamics
[17], but most physical Hamiltonians (i.e., Hamiltonians
that are actually relevant for scientific applications) lack
these favorable structures.

Encouragingly, recent years have seen significant
advances in developing new dissipative protocols for
Gibbs state preparation [23-32], as well as in understand-
ing their effectiveness by analyzing the mixing time
[33-41], which quantifies the time required to drive any
initial state to the steady state of the dissipative dynamics
(see definition in Sec. II). Several dissipative protocols
[9,42-49] have also been designed to prepare the ground
state of noncommuting Hamiltonians. Such protocols will
still encounter the quantum Merlin-Arthur hardness of
ground state preparation in the worst-case scenario, where
the challenge can manifest as exponentially long mixing
times. Nonetheless, these methods more closely resemble
cooling processes in nature, and offer the potential for
significantly shorter mixing times in certain physical
Hamiltonians.

The theoretical characterization of efficient ground state
preparation protocols is, however, much more challenging
than that for thermal states. A key distinction lies in the
invertibility of thermal states, which is essential for the
concept of quantum detailed balance conditions (DBC)
[24,26,50-52]. In contrast, the density matrix of a pure
ground state has rank one and is therefore noninvertible,
which makes most existing theoretical tools inapplicable in
this setting. Numerically, these protocols can also be
difficult to simulate for systems beyond the reach of exact
diagonalization methods, as constructing the corresponding
Lindblad jump operators is significantly more complex
than that in typical Lindblad dynamics.

In this work, we make significant progress in under-
standing the capabilities of dissipative ground state proto-
cols through both analytical and numerical investigations.
A concise overview of the numerical and theoretical results
is provided in Sec. IIL

The rest of the paper is organized as follows. In Sec. II, we
review the Lindblad-based ground-state preparation algo-
rithm, introducing the notion of mixing time and discussing
considerations for estimating the resource requirements of
dissipative protocols. Before the full discussion, Sec. III
provides an overview of the main results. We develop a
tensor-network method for simulating general Lindblad
dynamics on classical computers in Sec. IV. In Sec. VA,
we present the performance of the ground-state preparation
protocol for a variety of systems governed by quasi-free
Lindblad dynamics. In Sec. V B, we report the numerical
performance of the tensor-network method for simulating
the ground state preparation process beyond quasi-free
systems. Section V C provides a concrete example compar-
ing dissipative protocols with adiabatic state preparation
methods for preparing ground states. On the theoretical side,
in Sec. VIA we estimate the convergence rate in trace

distance for quasi-free systems, confirming the numerical
results of Sec. V A. Our rigorous analysis of rapid mixing for
ground-state preparation is presented in Sec. VIB.
Background material, detailed proofs, and additional
numerical results are collected in the Appendixes.

II. LINDBLAD-BASED GROUND STATE
PREPARATION ALGORITHM

The main goal of this work is to examine the perfor-
mance of the Lindblad-based ground state preparation
algorithm introduced in Ref. [43]. This dissipative algo-
rithm, inspired by gradient descent dynamics in classical
systems, employs carefully designed jump operators to
iteratively reduce the system’s energy and can prepare
ground states for noncommuting Hamiltonians.

A. Algorithmic construction

The Lindblad master equation for ground state prepara-
tion proposed in [43] [Eq. (1)] takes the form

dp _ . v 1
q =~ Ll = I[H,P]Jrza:KaPKu 5 (KaKo.p} (1)

We refer to K, as a jump operator, —i[H, p] as the coherent
part of the dynamics, and >, K,pKi — 1 {KiK,, p} as the
dissipative part of the dynamics, respectively.

Starting from a set of coupling operators {A,}, whose
selection will be discussed in detail later, the corresponding
jump operator K, is engineered to “shovel” high energy
components in the density matrix towards lower energy
ones [Fig. 1(a)]. The success of the ground state preparation
algorithm relies on the assumption that, starting from a
simple initial state (e.g., the all-zero state or the maximally

. Initial population . Final population
(a) (b)
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FIG. 1. (a) Schematic representation of the ground state
preparation algorithm, in which high-energy components are
systematically dissipated into lower-energy states until conver-
gence to the ground state is achieved. (b) and (c) The associated
filter function in the frequency and time domains, respectively.
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mixed state), which contains contributions from many high
energy states such as [y ) for some j; > 0, there exist
efficient transition pathways y; — w;, — -+ = yy.

In the energy eigenbasis, the jump operator takes the
form

Ko =Y F =)l wilddv)wl. @)

Here {4;,|w;)} represent eigenpairs of the system
Hamiltonian H ordered such that 1o <iy+A=1,<--,
and f(w) is a filter function in the frequency domain. The
filter function j‘(a)) is supported only on the negative axis
(—Wmax, 0) for some wy,,, to be specified later. As a result,
in the energy eigenbasis, only transitions from [y;) to [y;)
satisfying —@p,, < 4; — 4; < 0 are allowed. The parameter
®nax therefore characterizes the maximal energy change
per application of the jump operator. Moreover, for any
choice of A,, we have K,|y,) =0, since there is no
eigenstate with energy lower than 4,. Hence, the ground
state o = |wo)(wo| is always a fixed point, or stationary
state of the dynamics.

Equation (2) expresses the jump operator K, using the
eigendecomposition of H. It can be equivalently represented
in the time domain as follows. By expressing f(a;) as a filter
function in the time domain via the Fourier transform

7(5) =5 [ F@le o o)

and using the spectral decomposition of H, we obtain

K,= /oof(s)eiH“'Aae_iH”ds. (4)

Although the construction may appear relatively compli-
cated, we can represent the jump operator coherently on a
quantum computer using a block encoding [4]. The resulting
linear combination of Heisenberg evolutions of A, involves
only queries to Hamiltonian simulation and does not require
diagonalizing the Hamiltonian H. This, in turn, requires
efficiently approximating the integral in (4) through an
appropriate numerical quadrature scheme.

Let ||H|| and A denote the spectral radius and the spectral
gap of the Hamiltonian H, respectively. To construct this
quadrature, f(s) should decay rapidly as |s| - oo so that
the integration range can be truncated. By the duality
between the real-space and frequency-space representa-
tions of a function, j‘(w) should be as smooth as possible in
the frequency domain, while still allowing the jump
operator to efficiently induce a transition from |y;) to

lyo). This implies that (1) — A,) = f(—A) should have a
non-negligible value. Together with f(0) = 0, the function
f‘ must make a sharp transition within an energy window of

size A. This implies that in the time domain, f(s) is
approximately supported on an interval whose size is
proportional to A~

For efficient discretization of the integral, we note that
f(s) oscillates in the time domain with a wavelength on the
order of wp},, which implies that ®,,, should not be
chosen excessively large. Naturally, we choose @,z <
2||H||, since no energy transition beyond this range can
occur. For simplicity of the analysis, in this work we always
choose @, = 2||H||. In practice, it is often sufficient to
choose @, to be much smaller and independent of the

system size. The behavior of f(w) and f(s) is illustrated in
Figs. 1(b) and 1(c), respectively. Based on the discussion
above, the construction of this filter function requires
only a lower-bound estimate for A, and optionally, an
upper-bound estimate for ||H]|.

B. Quasilocality of the jump operator

A fundamental question in dissipative state preparation is
as follows: Given a target quantum many-body state o,
under what conditions must the jump operators be chosen
so that ¢ is a fixed point of the dynamics? For pure state
preparation ¢ = |y) (|, several necessary conditions on
the jump operators are known [12,53,54]. In particular, the
target state must be annihilated by each jump operator (up
to a constant shift) [54] (Proposition 1).

Kulw) =0, Va. (5)

This requirement places strong restrictions on the class of
pure states (for example, ground states) that can be
prepared using strictly local dissipative protocols, where
each K, acts nontrivially only on a fixed number of sites
[54] (Corollary 2). A key observation in Ref. [43] and in
this work is that if one allows the jump operators to be
quasilocal (i.e., nonlocal operators with exponentially
decaying tails, see Appendix A for the definition), then
dissipative protocols still satisfy Eq. (5), and can provably
prepare the ground states of a much broader family of
Hamiltonians, including noncommuting ones. We note that
in some experimental contexts, the term quasilocal has
been used to describe few-qubit operators that may still be
challenging to realize in practice [12]. In contrast, through-
out this work we adopt the convention common in
mathematics and computer science, where such operators
are regarded as local, and reserve the term quasilocal for
operators with exponentially decaying support.

C. Efficient quantum simulation of Lindblad dynamics

There are two main strategies for simulating the
Lindblad dynamics in (1). The standard approach is to
employ simulation algorithms that are applicable to general
forms of Lindblad dynamics. For example, high-order
algorithms [55-57] can achieve near-optimal simulation
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cost per unit time. Both the construction of K, and the
simulation algorithms [55-57] can use multiple ancilla
qubits, complex control logic, and are suitable only on full
fault-tolerant quantum computers.

The second, and simpler, strategy for simulating the
Lindblad dynamics in (1) is to exploit the specific form of
the jump operator in Eq. (4). In particular, this approach
does not explicitly construct K, but instead embeds it
directly into the simulation algorithm. This in turn can lead
to algorithms that overall use only a single ancilla qubit and
can be much more suitable for early fault-tolerant quantum
devices. We will not discuss such algorithms in detail and
refer the reader to [43] (Sec. III) for descriptions of such
algorithms. We note that while the simulation algorithm
proposed in Sec. III of [43] is designed for simulating a
single jump operator using a single ancilla, when multiple
jump operators are present, operator splitting can be
applied to handle each jump operator separately.

D. Mixing time

Dissipative protocols prepare the ground state as the
stationary state of the dynamics. The total simulation time
can be characterized by the mixing time, which denotes the
minimal time required for the system to drive any initial
state to one that is close to the ground state. This closeness
can be characterized by the trace distance. Let ||A||, =
Tr(VATA) denote the trace norm. The trace distance between
density matrices py, p is D(p1, p2) = 3llp1 = pally- This
metric has a direct operational meaning, since for any
bounded observable O, [Tr[O(p) —p>)]| <[[O][lp1 = p2||; <
2||0||D(p1, p1). Let o be a stationary state of the dynamics
generated by £. The mixing time with respect to the trace
distance is defined as

Tmix(7) = min {1|D(e"“(py).0) <n. Vpo}.  (6)

This definition of mixing time is widely used in
theoretical analysis [33—41]. However, in practice, the
trace distance can be difficult to evaluate, and one usually
cares about the mixing time for a given initial state pg, so
one may use surrogate notions of mixing defined through
physically meaningful quantities with respect to an initial
state py. For instance, the energy-based mixing time is

ki (3 p0) = min {¢|[Tr[He'™ (pg)] = 20| <n}. (7)

For two density matrices p, o, the fidelity F(p,0) =

Tr[\/ p%ap%] When o = |yg)(w| is a pure state (p can
be a pure or mixed state), the fidelity simplifies to

Tr[(yolp|lwo)]. The fidelity-based mixing
time is

Trix (1390) = min {11 = F2(e'(py).0) <n}. (8)

Even though 7£. ‘and zf. measure convergence through
specific variables, when maximizing over all initial states
po, they can provide both an upper bound and a lower
bound of the mixing time defined via trace distance. These
relations are derived in Eq. (B8) in Appendix B.

We will specify the notion used in the numerical results
below. The theoretical justification will be provided
directly for the mixing time in terms of the trace distance.

E. Resource estimate

The total cost for dissipative ground-state preparation
using Lindblad dynamics can be decomposed into three
components: the cost associated with constructing the
Lindbladian and in particular jump operators K ,, denoted
by C,; the cost of simulating Lindblad dynamics per unit
time denoted by Cy, using a Lindblad simulation algorithm
as discussed earlier; and 7., an upper bound on the total
simulation time. Given these factors, the end-to-end re-
source cost is

End-to-end cost = C, X Cg X Tpix- 9)

Using the standard approach for simulating the Lindblad
dynamics, the cost for constructing K, to precision € is
O(wma A" Tog(1/€)) [43] (see Appendix A for the mean-
ing of the notation O). Let ||L]|,. = [|H|| + 13, [|Ka|*
Using the algorithm in [57] for simulating the Lindblad
dynamics (1) up to time ¢ with precision e the cost is
O(#]| £]lye log [(]|£lloe)/€]).  For —a  typical ~ physical
Hamiltonian (spin, fermion, etc.) defined on N sites,
I£]]ye = poly(N) and the end-to-end cost is

O(tmix A~ poly(N)polylog(1/e)). (10)

The simplified algorithm in [43] (Sec. III) combines the
step of generating K, and simulating the dynamics. It can
be viewed as a first-order algorithm for simulating the
continuous-time Lindblad dynamics. The end-to-end cost is
[43] (Theorem 1)

(2, A poly(N) /e). (11)
Theorem 2 in [43] further presents a discrete-time algo-
rithm that reduces the cost from quadratic to nearly linear in
Tmix» Which we do not discuss here.

Thus, for the end-to-end cost to scale polynomially
with the system size N, the most important and challeng-
ing task is to estimate the mixing time and establish
that 7,,;, = poly(N), a property often referred to as fast
mixing. In some cases, an even stronger bound 7, =
polylog(N) can be proved, which is known as rapid
mixing.
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The remainder of this manuscript focuses on character-
izing the effectiveness of the Lindblad dynamics for
ground-state preparation quantified by mixing times.

III. SUMMARY OF RESULTS

A. Numerical results

We perform numerical simulations for both quasi-free
and general dissipative dynamics. For general dissipative
dynamics, we develop a new numerical simulation algo-
rithm based on tensor networks, which is described
in Sec. IV.

1. Quasi-free dynamics (Sec. VA)

We begin by exploring quasi-free dissipative dynamics
[58,59]. Lindblad dynamics is called quasi-free if the
Hamiltonian is quadratic in Majorana operators and jump
operators are linear in Majorana operators. A hallmark of
such systems is that physical observables, such as covari-
ance matrices, form a closed set of equations. This enables
efficient simulations of these observables for large systems.
Utilizing this framework, we demonstrate numerically that
the ground state of a translationally invariant 1D transverse
field Ising model (TFIM) chain can be efficiently prepared,
even when cooling is applied only at the boundaries of the
chain. We observe that, with boundary dissipation, the
mixing time as defined by physical observables scales
approximately cubically with the system size, which is
consistent with findings from prior numerical studies using
different dissipative protocols [47,60,61].

We also observe that boundary dissipation efficiently
prepares the ground state of a cluster state Hamiltonian with
a symmetry-protected topological (SPT) ground state
phase. Starting from a trivial topological phase, we find
that the protocol allows crossing the phase boundary, as
indicated by changes in string order parameters (SOP). In
all the examples we have studied of systems subjected to
boundary dissipation, we observed that the coherent term in
the Lindblad dynamics is essential for achieving conver-
gence, even though it vanishes when applied to the
ground state.

2. General Lindblad dynamics (Sec. IV, Sec. V B)

For general dissipative dynamics that are not quasi-free,
we propose a new numerical algorithm based on the tensor
network methods to efficiently represent jump operators
and the Lindbladian [62,63]. Using this algorithm, we
study the mixing time required to prepare the ground state
of 1D anisotropic Heisenberg models in a magnetic field,
which includes the TFIM as a special case. Dissipation is
applied to each spin site (referred to as bulk dissipation),
and the resulting dynamics is not quasi-free even for the
integrable TFIM Hamiltonian. Our numerical results show
that the Hamiltonian with bulk dissipation exhibits rapid
mixing; this mixing time scaling also applies to spin

systems with weak random perturbations in their on-site
interactions, whose ground states cannot be efficiently
prepared by boundary dissipation alone due to the obstruc-
tion caused by Anderson-type localization. We further
verify the robustness of our approach using a nonintegrable
cluster-state Hamiltonian, which has a ground state in a
symmetry-protected topological (SPT) phase.

B. Theoretical results

To gain an analytical understanding of the convergence
behavior of our dissipative protocol, we provide theoretical
guarantees that rigorously establish upper bounds on the
mixing time for several physically relevant Hamiltonians.
As in our numerical studies, we begin with quasi-free
systems and present a general theorem upper bounding the
mixing time in this case. We then move beyond quasi-free
systems and demonstrate rapid mixing for weakly interact-
ing spin and fermionic systems.

1. Quasi-free dynamics (Sec. VI A)

First, we note that rigorously establishing the mixing
time in terms of trace distance poses significant challenges,
even for quasi-free systems. Previous analyses of mixing
time estimates, including those for quasi-free systems,
typically relied on the assumption that the stationary state
is invertible, making it difficult to extend these results to
ground state preparations [46,64]. We develop a new
method that can overcome this difficulty by examining
the spectral properties of a non-Hermitian Hamiltonian.
Specifically, in the absence of dissipation, the eigenvalues
of the Lindblad dynamics lie entirely on the imaginary axis.
With dissipation, we show that the mixing time measured
by the trace distance is determined by the gap between the
eigenvalues of this non-Hermitian Hamiltonian and the
imaginary axis.

This new approach enables explicit estimates of the
convergence rate in trace distance, with or without a
coherent term. In particular, it proves that the mixing time
of the 1D translationally invariant TFIM with boundary
dissipation scales as O(N? log N), which is consistent with
our numerical results. The cubic scaling of the mixing time
is mainly due to the long-wavelength modes, which perturb
the eigenvalues of the aforementioned non-Hermitian
Hamiltonian away from the imaginary axis by an amount
proportional to N73.

2. General Lindblad dynamics for weakly interacting
systems (Sec. VI B, Sec. VI C)

Beyond quasi-free systems, we consider the preparation
of the ground state of a weakly interacting spin Hamiltonian
in an arbitrary finite dimension. Specifically, the
Hamiltonian is expressed as H = Hy+¢eH;, where H is
a gapped Hamiltonian composed of noninteracting terms,
and the interaction strength ¢ is assumed to be smaller than a
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constant that is independent of the system size. We establish
the convergence of the density matrix by analyzing the
convergence of observables in the Heisenberg picture,
measured through a quantity known as the oscillator norm,
which measures the deviation of an observable from the
identity under Heisenberg evolution with the Lindbladian.
This strategy was recently utilized in the analysis of mixing
times of quantum Gibbs samplers in the high-temperature
regime (small inverse temperature /) [39].

Our first observation is that the definition of the
oscillator norm does not rely on an invertible stationary
state, and thus serves as a plausible candidate for character-
izing convergence to the ground state. However, we need to
modify the definition of the oscillator norm of an observ-
able O to track separately the deviation of O from the
identity operator along on-diagonal and off-diagonal direc-
tions. In the presence of perturbations, our proof employs a
Lieb-Robinson bound adapted to the ground state setting.
By integrating these elements, we establish a new stability
result for the convergence rate of the oscillator norm, which
provides the first rigorous proof of ground state preparation
protocols for noncommuting Hamiltonians.

Finally, we extend the result of weakly interacting spin
systems to weakly interacting fermionic systems. The
fermionic creation and annihilation operators are nonlocal
in the spin basis. Therefore, we need to employ a fermionic
version of the partial trace to define the oscillator norm. We
then prove that this modified definition of the oscillator
norm can effectively characterize the rapid convergence of
observables in the fermionic setting. We conclude that, for
bulk dissipation, both weakly interacting spin systems and
weakly interacting fermionic systems exhibit rapid mixing.

IV. CLASSICAL SIMULATION ALGORITHM OF
LINDBLAD DYNAMICS

For general Lindblad dynamics, we need to simulate the
dynamics in Eq. (1) directly to estimate the mixing time.
For system sizes beyond the reach of exact diagonalization
(ED), we propose an algorithm that constructs the jump
operators and propagates the Lindblad dynamics using a
matrix product operator (MPO) formulation. Recall that an
MPO on an N-site system (each site of local dimension d)
with bond dimension D can be written as

d
. 51,5} Sy .Sy
M=) (M M)
S, s ..... sy.sy=1
/ /
X |81, oo Sy (ST o syl (12)
S1,8" Sy LSh .
where M,""'---My"" defines the corresponding

matrix product, with M;""'e C'*P, MV e CP*!, and

Mf"’si' €CP*P for 2 <i <N — 1. The cost of storing the

f(s)dsj % f(s)ds = @

4}4}

(S) Kaq

FIG. 2. Tensor network representation of the jump
operator K, in the MPO form associated from a local coupling
operator A,. First, the MPO representation of the operator
e™iA,e~5i is constructed for a set of time steps {s;}. Next,
a weighted summation from discretizing the integral
> pif(s;)e™siAe i is performed to combine these oper-
ators. Finally, the resulting MPO is compressed to reduce the
bond dimension, yielding an efficient representation of K,,.

matrix products is O(d”> D> N), which scales linearly with the
system size N.

To construct the jump operators K,, we start by repre-
senting both the coupling operators A, and the Hamiltonian
H as MPOs. We then compute the Heisenberg evolution
esA e~ ysing the time-evolving block-decimation
(TEBD) algorithm [65,66]. Next, we approximate the
integral in Eq. (4) by a quadrature rule,

Kom) pif(si)e™ A=, (13)
i

and compress the resulting sum to maintain a manageable
bond dimension. This yields the MPO representation of the
jump operator K, (see Fig. 2 for an illustration).

In practice, since A, is an operator rather than a state, the
TEBD algorithm is implemented by vectorizing A, into an
matrix product state (MPS) (often referred to as the Choi
isomorphism) [67]. Concretely, we reshape each site’s row
and column indices into a single combined index of
dimension d?, as illustrated in Fig. 3:

I

FIG. 3. [Illustration of vectorizing a MPO into a MPS using the
Choi isomorphism and then converting it back. Each pair of local
site indices in the MPO is reshaped into a single combined index,
allowing standard MPS techniques, such as TEBD, to be applied.
The reverse process restores the original MPO from the MPS by
reshaping the combined indices back into pairs.
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d*-1 -1
ﬁ - Z Z Ci,..., 1N|ll ® & |lN> (14)
iy=0

In a tensor network diagram, this corresponds to “gluing”
the row and column indices together on each site.
Converting back from an MPS to a MPO is achieved by
splitting each combined index back into two separate
indices. Under vectorization, the Heisenberg evolution
can be written as

|eiHsAue—iHs>tI _ €_i<I®HT_H®I)S|Aa>n, (15)

so that the standard TEBD algorithm can be applied directly.
To compute the jump operator K,, we proceed as follows:
(i) convert A, from its MPO form into a MPS using the Choi
isomorphism, (ii) apply TEBD to evolve the vectorized
operator over time, and (iii) perform a summation over the
discrete time steps, followed by bond dimension compres-
sion. The resulting MPS is then converted back into a MPO,
yielding K ,.

Once each jump operator is expressed as a MPO, and
given that p(7) is also stored as a MPO, we need to evaluate
the right-hand side of Eq. (1), ie., L(p(r)). This is
illustrated using tensor network diagrams in Fig. 4.
However, direct multiplication and addition of MPOs tend
to increase the bond dimension quickly. For example, in the
absence of a compression step, multiplying two MPOs with
bond dimension D results in a MPO with bond dimension
D?, while adding two MPOs yields a MPO with bond
dimension 2D. If we choose {A,} to be the set of all Pauli
matrices, and assume every operator in the Lindbladian has
bond dimension D, the bond dimension of the MPO
representation for £(p) would become O(ND?).

Forming such a MPO and then compressing it would
have an onerous cost of O(D?). Instead, we directly fit a
MPO of bond dimension D to the uncontracted sum of
triple MPO products as depicted in Fig. 4, adapting the
method of [68]. This only requires computing the overlap
of the ansatz with these terms (see Appendix E). The initial
guess is chosen as the “zip-up” compression [69] of the first
term. Both this and the subsequent fitting iterations have a
cost of O(D3).

%zx%zx%j

"

dp/dt

K, P K! P K!' K,

FIG. 4. Illustration of the tensor network computation associ-
ated with a single jump operator K, in L(p).

After obtaining the compressed MPO representation of
L(p), we may employ any suitable numerical integrator to
propagate p(t) forward in time. For large systems, each
evaluation of L(p) is expensive, so it is beneficial to
minimize the number of function evaluations. For bulk
dissipation, the cost of evaluating £(p) is large, but the
mixing time can be very short. Therefore we adopt a simple
forward-Euler method. For boundary dissipation, the mix-
ing time can be much longer, and there we employ a more
accurate 4th-order Runge-Kutta method instead. More
advanced solvers can be explored in future studies to
improve the accuracy or efficiency.

V. NUMERICAL RESULTS

A. Quasi-free dissipative dynamics
1. Mapping spin systems to quasi-free dynamics

The Hamiltonian of a 1D translationally invariant TFIM
with open boundary conditions is

N N—-1
H=-g>"7Z;-1% XXy (16)
i=1 i=1

Using the Jordan-Wigner transformation, the Hamiltonian
can be written as a quadratic Majorana operator with 2N
modes (Appendix C)

N-1

= 21JZWJ+NWJ+1 —l—ZLngijN (17)
= =1

We choose the coupling operators to be Pauli matrices X
and Y| on the boundary of the chain, which are linear
in the Majorana operators: X; = V2w, Y, = \/§w1+N. By
Thouless’s theorem, the Heisenberg evolution of a single
Majorana operator under a quadratic Hamiltonian is still
linear in Majorana operators. Therefore the jump operator
in Eq. (4) can be expressed as

2N
Ka = E Cjawﬁ
j=1

for some coefficients {;, € C.

Lindblad dynamics with a Hamiltonian term that is
quadratic in Majorana operators, and jump operators linear
in Majorana operators is called quasi-free. Using a vecto-
rization process known as “third quantization” [58,59],
each term in the vectorized Lindbladian becomes quadratic
in an enlarged set of Majorana operators. Physical observ-
ables of a quasi-free dynamics, such as the covariance
matrix

AaE{Xl’Yl}v (18)

w,w

pg = L(Wpwy) — =6 (19)

5 rq’
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form a closed set of equations, which involves only a
matrix of size 2N x 2N in time (Appendix C). This in turn
can be used to evaluate other physical quantities such as the
energy. Specifically, for a Hamiltonian quadratic in
Majorana operators, H = Zfﬁ]:l h,,quwq, where h i1s a
Hermitian and purely imaginary (and thus traceless) coef-
ficient matrix, the energy is given by

E= hyg(w,w,) = iTt[ATT]. (20)

For quasi-free systems with Gaussian initial states, higher
order covariance matrices are determined by the covariance
matrix " according to Wick’s theorem [70].

2. TFIM with boundary dissipation

Similar to the derivation in Appendix C, if we choose the
Pauli operators X, Y on the other end of the boundary,
the resulting Lindblad dynamics is also quasi-free. Hence
we choose {X;, Y, Xy, Yy} to be the coupling operators,
and construct the corresponding jump operators according
to Eq. (4).

Using the covariance matrix I'(¢), we can evaluate the
energy E(t) via Eq. (20). We note that the convergence
of the many-body density matrix cannot always be
inferred from the covariance matrix I'(¢). As a surrogate,
in this section, we characterize the mixing time in terms
of how rapidly the energy per site converges to its
value in the ground state. Specifically, we define the
mixing time as in Eq. (7), except that we measure the
convergence in terms of the energy per site, and start
from a specific initial state, namely, the maximally mixed
state p, = 1/2V.

Figure 5(a) demonstrates the energy decay of the
boundary-dissipated TFIM under Lindbladian dynamics.
Numerical simulations show that the energy rapidly con-
verges towards the ground state energy initially, and then
enters an asymptotic exponentially decaying regime
o e~®c!, The convergence rate A, is the gap of the
Lindbladian (also called the Liouvillian gap). We may
extract A, using an exponential fit of the dynamics, and can
also directly compute A - by means of the rapidity spectrum
for quasi-free systems [71]. In Fig. 5(b), we show how the
Liouvillian gap scales with the system size. The estimates
for A, from the slopes in Fig. 5(a) yield excellent agree-
ment with the spectrum calculations in Appendix G. Using
a log-log scaling for the axes, we find that A, = @(N~3),
which matches the scaling of the energy-based mixing time
tE. = O(N?) for fixed .

mix

3. Cluster state Hamiltonian with boundary dissipation

The 1D cluster state Hamiltonian on N sites takes the
form

10°

—— N=10
N =20
—a— N=30
—4— N=40
101 A\ ---- Fitting
z
)
w
|
S
u
10—2 4
1073 +— . v - : :
0 500 1000 1500 2000 2500
Lindblad simulation time t
(a)
= Inverse Liouvillian gap A?
@® Energy convergence rate Ky
10*{ ---- Fitting
103 4
At

101 4

100 4

161 162
Number of qubits N

(b)

FIG. 5. Numerical results of 1D TFIM (16) with J =1,
g= 1.5, using {A,} = {X,,Y,,Xy, Yy} as coupling operators.
(a) Convergence of energy starting from the maximally mixed
state. The dashed lines are exponential fits of the asymptotic
behavior of energy decay, meaning [E(¢) — Ey]/N =
Olexp(—kyt)] for constants xy when ¢ is sufficiently large.
(b) The scaling of the inverse of the Liouvillian gap Azl with
respect to the system size N. Red points are the energy
convergence rate ky calculated from fitting the data in (a).

N-2 N
j=1 j=1

This system plays a role in measurement-based quantum
computing [72,73], and exhibits an interesting symmetry
protected topological (SPT) phase, with a fourfold degen-
erate ground state in the thermodynamic limit [74,75]. The
field strength h,/J drives a phase transition between a
simple paramagnetic phase and the SPT phase. Using the
Jordan-Wigner transformation, the Hamiltonian can be
expressed as a quadratic Majorana operator
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N-2 N
H = ZiJZWj+NWj+2 + 2lh1 ijwj+N’ (22)
j=1 Jj=1

which is similar to a Kitaev chain Hamiltonian with next-
nearest-neighbor (NNN) couplings. The string order
parameter (SOP) is a nonlocal order parameter which
can be used to distinguish between the SPT phase and
the paramagnetic phase. It is defined as

Sab = SmXaZat1Zas3---Lp3Zp1 Xy

m—1

= (2i)™ H Wai2i H Wyt N+2is (23)
i=1 i=0

where a, b are arbitrary starting and ending points in the
bulk with b — a being an even number, m = (b — a)/2, and
S = (=1)""=D/2 is a sign coming from the Jordan-
Wigner transformation. The SOP can be computed using
Wick’s theorem [70]

m m—1
(Sap) = (Zi)m<H Wa+2i H Wa+N+2i>
i=I i=0
= Pf(2T(1)s (24)

where I, is the covariance matrix restricted to the indices
{9} ={a+2i,a+ N+2(i-1)|i=1,...(b —a)/2} and
Pf denotes the Pfaffian.

We choose the coupling operators to be two single
Pauli operators on two ends of the boundary
A =Y,,A, =Yy. The corresponding jump operators
are linear in Majorana operators, and the dissipative
dynamics is thus quasi-free. The presence of zero energy
edge modes in the SPT phase of the system leads to
nearly degenerate ground states with energy gaps closing
exponentially rapidly as the system size increases.
However, the closing of the energy gap is entirely due
to the presence of the edge modes which is irrelevant for
bulk properties such as the SOP. Therefore we may define
an effective gap, denoted by A .y, by excluding the
eigenvalues in the Liouvillian exponentially clustering
near 0, and choose the parameters in the filter function
f(w) based on this effective gap. When choosing effec-
tive gap Ay = 0.1 in f, the resulting dissipative dynamics
converges to a statistical mixture of the nearly degenerate
states with the same SOP value in the thermodynamic
limit (Fig. 6). The SOP is evaluated by setting a, b to be
the two ends of the chain. We find again that boundary
dissipation alone is sufficient to drive the system from a
paramagnetic phase towards SPT phase.

Next, we examine how the convergence rate of
Lindbladian dynamics scales with the system size. As in
the study of the SOP, we set the coupling operators to be
single Pauli Y operators at the two ends of the system

1.0 o i
\\\\ e Final state
0s] .\\ -== Ground state
\
rT 0.6 \
< \\
S \
wn 04 \.
\
\
0.2 1 \\
\.\
-
0.0 =9
OtZ 0t4 0?6 0T8 ITO ltZ 1?4
hilJ

—— N=10

N=20
—— N=30
—— N=40

0 200 400 600 800 1000
Lindblad simulation time t

(b)

FIG. 6. Evolution of the string order parameter (SOP) for the
cluster state Hamiltonian (21) with boundary dissipation. The
system size is N = 20. (a) SOP comparison between the ground
state (blue dashed line) and the final state at 7= 1500 (red
points). The final state accurately captures the quantum phase
transition from the paramagnetic phase to the SPT phase.
(b) Evolution of the SOP for several system sizes with
hy/J = 0.5, whose ground state is in the SPT phase. The initial
state is the all-spin-down state, which is in the paramagnetic
phase with SOP = 0. The dissipative evolution consistently
drives the system from the paramagnetic phase into the
SPT phase.

(Aj =Y, and A, = Yy) and fix Ay = 0.1 for all N. The
initial state p, is chosen to be the all-spin-down state. In
Fig. 7, we plot the energy decay of the SPT system with
h/J =0.4. For N = 20, 30, 40, similar to the 1D TFIM
case, the energy rapidly approaches the ground state energy
at early times before entering an asymptotic regime
characterized by exponential decay. We note that for
N =10 an energy plateau appears. This is because the
Hamiltonian in Eq. (21) has a fourfold degenerate ground
state in the thermodynamic limit. For small system sizes,
there is still a small energy gap between these nearly
degenerate states, which is smaller than our chosen A.
Reducing A, would further lower the plateau. In Fig. 7, we
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105,
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FIG. 7. Numerical results for the cluster state Hamiltonian (21)
with boundary dissipation. (a) Convergence of energy starting
from the maximally mixed state. Here, we use boundary
dissipation and set A =0.1, h;/J =0.4. The dashed lines
are exponential fits of the asymptotic behavior of energy decay
before hitting the energy plateau caused by the exponentially
decaying edge modes. (b) The scaling of the inverse of the
effective Liouvillian gap Az,leff with respect to the system size N
with different /2, /J. Points are the fitting energy convergence rate
Ky calculated from dynamics simulation.

illustrate how the effective Liouvillian gap scales with
system size. For various values of /;/J, we consistently
observe that the inverse effective gap scales as A[_:,leff =
O(N?). Consequently, to achieve a fixed accuracy 7, the
energy-based mixing time scales as 2. = O(N?).

mix

B. Numerical results of tensor network simulation
1. Rapid mixing of 1D gapped local Hamiltonians

As an application of our tensor network based algorithm,
we prepare the ground state of two examples of 1D gapped,
noncommuting local Hamiltonians using bulk dissipation,
i.e., the coupling operators are chosen to be the Pauli
operators {X;, Y;, Z;} on all sites. The first one is the same
TFIM example in Eq. (16) with J = 1, g = 1.5. The second
example, which cannot be transformed into a free fermionic

1.0
€ N=6
0.8 N=10
T e N=2
—4— N=30
s 0.6 «eree Tmniv
B 0.4
0.2
0.0 ! v - —- .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Lindbladian Simulation Time
.. . F . . .
FIG. 8. The mixing time, 7, as defined in (8). During the

Lindbladian dynamics, the fidelity increases steadily and even-
tually converges to one. However, the convergence speed
decreases as the system size increases.

system, is an anisotropic Heisenberg model in a magnetic
field, described by the Hamiltonian

N-1 N-1 N
H=-JY XXi =&Y (YiYi+ZZin) =9 Zs
i=1 i=1 i=1
(25)

Here we choose the parameters g= 1.5, J =1, and
& =0.1. We simulate their Lindblad dynamics for system
sizes up to N = 30. The bond dimension D of the MPO
representation for both the jump operators and the density
matrix is set to 50. We validate this choice of the bond
dimension in Appendix E.

In this section, we measure the mixing time with respect
to the fidelity as in Eq. (8). Unless otherwise mentioned, we
choose 7 :% and start from the maximally mixed state
po =1/2N. The fidelity increase during the Lindbladian
dynamics of the TFIM model is shown in Fig. 8. The results
in Fig. 9 demonstrate that the mixing times in both cases
scale logarithmically with the system size; this scaling is

often referred to as “rapid mixing” [33,36].

2. TFIM with random transverse field

Now consider the 1D TFIM but with a random transverse
field

N N-1
H = _Zgizi - JZXiXiJrl’ (26)
i=1 i=1

where the strength of the transverse field g; ~ N'(2, 6%) and
6? is the variance parameter. Because of the Anderson
localization, for any ¢ > 0, the eigenfunctions of H are
exponentially localized in space. This means that choosing
single Pauli operators on the boundary produces a large
number of inaccessible “dark modes” (i.e., (y;|A,|w;) = 0),

which means that boundary dissipation alone may lead to
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FIG. 9. Scaling of the mixing time for TFIM (red) and the
Heisenberg model in a magnetic field (blue) under bulk dis-
sipation, shown as a function of system size. The results indicate
a logarithmic scaling, consistent with z£. = ©(log(N)).

an exponentially long mixing time, or fail to converge to the
ground state altogether. Nonetheless, the bulk dissipation is
not subject to this failure mechanism due to Anderson
localization. We choose the set of coupling operators {A, }
to be all Pauli operators {X;,Y;, Z;}Y ,. We simulate the
resulting Lindblad dynamics using the tensor network
methods for system sizes up to N = 16. Figure 10 illus-
trates the scaling behavior of the mixing time as a function
of the system size N. Our results indicate a logarithmic
scaling of the mixing time, suggesting that ground state
preparation can be efficiently achieved using bulk
dissipation.

3. Nonintegrable cluster state Hamiltonian

We now consider the following generalization of the
cluster state Hamiltonian

| = Fitting
random TFIM

—
-

—
o

Tiz = 4.Tlog(n) — 1.1

Mixing time 7,
z

0.84

0.71

6% 10° 1&
System size n

FIG. 10. The scaling of the mixing time of random TFIM
under bulk dissipation, i.e., we use 3N separate jump operators
with the set of all Pauli operators on each site as coupling
operators {X,Y,Z}". The Hamiltonian parameters are set to
J=1,62=0.5. We observe a logarithmic scaling of the
mixing time.

Ground state SOP
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Lindbladian Simulation Time

FIG. 11. Energy and SOP during the evolution for the non-
integrable cluster state Hamiltonian (27) under boundary dis-
sipation with system size N = 10. The plot shows the energy
converging to the ground state energy and the SOP transitioning
from the paramagnetic phase (SOP = 0) to the SPT phase.

N-2 N N-1
H=- ZXiZ,~+1Xi+2 - hy Zzi ) Zzizm- (27)
i=1 i=1

i=1

When &, # 0, the Hamiltonian cannot be transformed into
a free fermionic system. Nonetheless, the ground state can
still exhibit the SPT phase characterized by a nonzero SOP.

As an illustration, we choose the coupling operators to be
single Pauli operators on the boundary A; = Y;,A, = Yy.
The parameters for 7, = 0.4, h, = —0.4 are set so that the
ground state is in the SPT phase. We simulate the Lindblad
dynamics starting from the maximally mixed state, which
lies in the paramagnetic phase and exhibits a zero SOP
value. As shown in Fig. 11, the energy converges to the
ground state energy, and the SOP converges to approx-
imately 1 during the evolution, indicating that the state
transitions from paramagnetic phase to SPT phase. Our
result shows that the Lindblad-based algorithm crosses the
phase transition boundary during ground state preparation.

C. Comparison with adiabatic state preparation
protocols

A natural question is whether dissipative state prepara-
tion protocols offer advantages over alternative approaches,
such as adiabatic state preparation. Since both adiabatic
state preparation [1] and dissipative state preparation [17]
are known to be BQP-complete, meaningful comparisons
arise only within specific problem settings, where one can
exploit structural properties of the target system and
evaluate the relative performance of each method under
those conditions.

In a typical protocol for adiabatic ground-state prepara-
tion, one considers a time-dependent Hamiltonian that
interpolates between an initial noninteracting Hamiltonian
whose ground is easily prepared and a final target
Hamiltonian whose ground state is desired. This method
can be effective if one can identify a gapped adiabatic path
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that connects the target ground state to the trivial ground
state. However, it is likely to fail if the path crosses a first-
order phase transition where the gap vanishes and the
quantum state must vary sharply to remain close to the
instantaneous ground state along the path.

To compare the performance of dissipative ground-state
preparation and adiabatic ground-state preparation, we
consider as an example the 1D axial next-nearest-neighbor
Ising (ANNNI) model [76]:

J J r
H annnt = leziziﬂ + ZZZZiZHZ - EZX"’ (28)

where J; is the nearest-neighbor coupling, J, is the
frustrating next-nearest-neighbor coupling, and I' is the
strength of the transverse field.

In the ANNNI model, there are three competing
tendencies: (i) for J; > 0, the nearest-neighbor Ising term
favors an antiferromagnetic Néel state such as |1} 1] - - );
(ii) for J, > 0, the next-nearest-neighbor term favors a
period-4 modulated structure such as |11 ---); and
(iii) the transverse field provides quantum fluctuations
and favors a state with spins polarized in the x direction.

For adiabatic state preparation, we may use a linear
interpolation between a simple initial Hamiltonian H;,;; =
—(hy/2) > ; Z; and the ANNNI target s.t.

H(s(t)) = (1 = s(¢))Hini + s()H annnts (29)

with a monotonic schedule satisfying s(0) = 0, and s(T') =
1 [for instance, s(¢) = t/T,t €0, T]]. The adiabatic evo-
lution from the initial ground state |y(0)) is given by

i0,|w (1)) = H(s(t))|w (1)),

The initial state is polarized in the z direction. As s
increases, this z-polarized phase competes with the ordered
phase selected by (J, J,). When T" = 0, along the adiabatic
path from H;,; to Hannng, @ first-order transition is
encountered at a point s = s, where the energy of the
z-polarized state becomes equal to that of the competing
ordered phase and the gap vanishes. For small I', the
location of the transition shifts, and the level crossing opens
into an avoided crossing with a small gap.

We simulated this protocol for J; =2, J, =0.6,
I'=0.2, hy =1.0, with periodic boundary conditions
and lattice size L =12. For each instantaneous
Hamiltonian H(s) along the adiabatic path, we define
the ground state manifold as the set of orthogonal eigen-
states within 107 energy of the lowest eigenvalue. As
shown in the inset of Fig. 12, the ground state manifold
dimension varies nonmonotonically along the path: starting
from a unique ground state, it reaches a maximum of 3
around s = 0.4, decreases to 1 around s = 0.5, and
stabilizes to 2 for s > 0.6. We also define the effective

0<t<T. (30)

Effective gap Ground manifold dimension
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FIG. 12. Adiabatic state preparation for the ANNNI model at
L = 12. Top: Effective gap, and the ground manifold dimension
of the instantaneous Hamiltonian H(s) along the adiabatic path.
Bottom: Evolution of the overlap between p(r) and the ground
manifold and the order parameters.

gap as the energy difference between the lowest excited
state above the ground state manifold and the ground state
energy; notably, this gap nearly closes three times along the
adiabatic path.

To assess the quality of state preparation, we monitor the
overlap with the ground-state subspace of the target
Hamiltonian H yxnnp» quantified by Tr[p(#)o], where ¢ =
lwo) (wo| + [w1){w,| denotes the (unnormalized) projector
onto the twofold degenerate ground state manifold. This
choice reflects the fact that the goal of the algorithm is to
prepare the correct subspace rather than a specific pure state
within it, which is a natural measure from an algorithmic
perspective for degenerate systems. In addition to fidelity,
we track the convergence of the order parameters

1 1
m=r (Z:Zi14), my =

ZZ.2) (1)
to their target values averaged over the H xnnnp ground state
manifold. Since all ground states within the manifold yield
identical values of m; and m,, these observables serve as
stable and physically meaningful indicators of successful
ground-state subspace preparation.

For a total evolution time 7" = 1000, we plot in Fig. 12
the overlap between the time-evolved state p(r) =
lw(t))(w(t)] and the ground state manifold of H xnnni-
This ground manifold overlap exhibits persistent oscilla-
tions and never achieves a high value, indicating that the
adiabatic protocol fails to prepare the ground state. The
initial state is z polarized, and as the system evolves, it does
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FIG. 13. Adiabatic state preparation for the ANNNI model at

L = 12. Evolution of the overlap between p(¢) and the ground
manifold and the order parameters.

not reach the correct ordered phase. This poor performance
is due to the presence of multiple level crossings and small
gaps along the adiabatic path, which induce diabatic
transitions and prevent the system from remaining in the
ground state manifold.

In contrast, as shown in Fig. 13, dissipative state
preparation with coupling operators A = {X;, Z;}- | suc-
cessfully prepares a high-fidelity approximation to the
ground state manifold. We set the spectral gap parameter
A = 0.2 when constructing the jump operators, and this
protocol does not distinguish between the two degenerate
ground states of H synnp- The initial state is chosen to be the
all-one state, the same as that used in adiabatic state
preparation. Under dissipative state preparation, the observ-
ables m; and m, converge rapidly and monotonically to
their target values, which are unaffected by the complex
energy landscape or gap closings encountered along the
adiabatic path.

The results presented here do not imply that adiabatic
state preparation cannot be adjusted to achieve ground state
preparation. For example, we could introduce a carefully
designed adiabatic path to avoid any gap closing. However,
this approach may require detailed knowledge of the
system, and it can be challenging to determine in advance
whether a specific adiabatic path will be sufficient. On the
other hand, the design of dissipative protocols can be more
agnostic to the specifics of the target Hamiltonian or ground
state. Ultimately, the comparison between these methods
will likely be system dependent, and more theoretical and
numerical investigations will be needed in the future.

VI. THEORETICAL RESULTS

A. Mixing time of quasi-free systems

In this section, we establish a theory that provides an
explicit bound on the convergence in trace distance to the
ground state for general quasi-free dynamics. When applied
to the TFIM model studied in Sec. VA, we find that the
convergence rate estimate matches with the numerical
observation.

We provide some high-level ideas of our strategy below.
To prove the convergence in trace distance, we use the
Fuchs—van de Graaf inequality (see Theorem 4). The
ground state of any Hamiltonian that is quadratic in
Majorana operators can be written as a quasi-vacuum state
o = |vac)(vac|, with

bylvac) =0, k=1,...,N, (32)
for a properly defined set of fermionic annihilation oper-
ators {b;} (Appendix C). Let N =, bb, be the total
number operator. Note that all states other than |vac) have
at least one particle. This gives the inequality

1 — (vac|p|vac) = Tr[p(I — |vac)(vac|)] < Tr[pN].  (33)

If we could prove an inequality of the form £f(N) < —cN
for some constant ¢ > 0, then it would immediately follow
that Tr[Np(r)] < Tr[Np(0)]e=, completing the proof.
However, in many cases including boundary dissipation,
such an inequality does not hold for any ¢ > 0. Our key
innovation is to find a positive definite observable O, which
is equivalent to the number operator in the sense that there
exist constants C;, C, such that C;N < O < C,N. Then,
for a proper choice of O, we prove the desired inequality
L7(0) < =2A0 for some constant A > 0 and thus the
exponential convergence property:

Tr{0p(1)] < Tr[Op(0)]e~24. (34)

This relation in turn gives
N C “
Te[Np(1)] < C—zTr[Np(O)]e‘ZA’. (35)
1

The key point is that the ratio (C,/C;) > 1 and contributes
only a logarithmic additive term to the mixing time. When
substituted into the Fuchs-—van de Graaf inequality, this
yields the desired exponential convergence in trace distance
with the explicit convergence rate A. It is worth noting that
Tr[Op] may be viewed as a Lyapunov function of the
Lindblad dynamics.

We find that the convergence rate A, as well as the
constants C;, C,, are determined by a non-Hermitian
quadratic Hamiltonian

o . 2N
th =iH —Eza:KaKa - Z (hnh)pquwq’ (36)

p.q=1

where &, is a non-Hermitian matrix in general. Assume
hy, is diagonalizable as h,, = VDV~!, then A is given by
the non-Hermitian gap (—max; ReD;;). For a quadratic
observable O in Majorana operators, we find that £7(0) is

011004-13



YONGTAO ZHAN et al.

PHYS. REV. X 16, 011004 (2026)

entirely determined by the non-Hermitian coefficient
matrix h,, [see Eq. (F5)].

We now present our main theorem for quasi-free systems
in Theorem 1, with the proof provided in Appendix F.

Theorem 1. Let H be a gapped quadratic Majorana
Hamiltonian with 2N modes, {A,} be a set of coupling
operators that are linear in Majorana operators, and K, be
the corresponding jump operators defined via Eq. (4).
We consider the non-Hermitian Hamiltonian in
Eq. (36), assume the coefficient matrix A, is diagonaliz-
able with h,, = VDV~!, and define the non-Hermitian
gap A = —max; ReD;;. We denote the condition number
of V by (V).

If A > 0,k(V) < oo, then starting from any initial state
po. the Lindblad dynamics (1) converges exponentially in
trace distance to the quasivacuum state ¢ = |vac) (vac| with

D(p(1),0) < k(V)VNe ™. (37)

An immediate result from Theorem 1 is that the mixing
time defined in the trace distance in Eq. (B7) scales as

M) (38)

Tmix(ﬂ) < A_l 10g<
n

Therefore as long as x(V) = poly(N), the scaling of the
mixing time is determined by the scaling of the non-
Hermitian gap A with respect to N, up to a logarithmic
factor.

1. Application to TFIM with boundary dissipation

The O(N?) scaling for boundary-dissipated 1D transla-
tionally invariant TFIM has been observed in previous
studies [77], where the jump operator is strictly applied to a
single site on the boundary. Their proof maps the problem
to a non-Hermitian Su-Schrieffer-Heeger (SSH) model,
which enables an analytic computation of the rapidity
spectrum. In contrast, our jump operators K, are quasilocal,
rendering this technique inapplicable. Instead, we leverage
the stronger result in Theorem 1 to directly bound the
convergence in trace distance.

For simplicity we only consider the case when the
coupling operators are X, Y; on one end of the boundary.
First, following the proof of Theorem 1 in Appendix F, the
jump operators take the form

K, = /f(s)eimxle_imds = Z(pklbkv
k

Ky, = /f(s)eimyle_imds = Zl//klbka (39)
k

for some coefficient vectors {¢;;},{ws}, where the
ground state is a quasivacuum state satisfying b |vac)=0.
Let A be a diagonal matrix encoding the eigenvalues of the

TFIM Hamiltonian H, then the non-Hermitian Hamiltonian
in Eq. (36) can be written as

. U U
Hy, = b/ b, hﬁh:u\—zfp(pf—zwi. (40)

The crucial role of the coherent term in convergence is now

evident. Without the coherent iA, hf:h is merely a rank-2
matrix, resulting in a large kernel for H,, and the non-
Hermitian gap A = 0. When the coherent term is present,
the jump operators can shift the imaginary eigenvalues iA
away from the real axis, opening a positive spectral gap.

Using first-order perturbation theory, we estimate the
spectral gap as A = @(N~3). The cubic scaling is mainly
due to long-wavelength modes, whose magnitude scales as
O(N~'3) near the boundary. The square of this magnitude
determines the spectral gap from the real axis, perturbing
the eigenvalues from the imaginary axis by an amount
proportional to N73.

Furthermore, k(V) = O(1), which gives the mixing time
scaling as O(N?logN). We provide the details in
Appendix G. We expect the analysis for the cluster state
Hamiltonian may be derived with a similar argument and is
omitted here.

B. Rapid ground state preparation of weakly
interacting spin systems

Our numerical results in Sec. V B strongly suggest that
dissipative dynamics can achieve rapid mixing, or
O(logN) mixing time, for certain non-commuting
Hamiltonians under bulk dissipation. However, as dis-
cussed in Sec. I, despite significant progress in theoretical
understanding of the effectiveness of finite-temperature
quantum Gibbs samplers [33,34,36-41], many of these
techniques cannot be used to characterize the convergence
towards the ground state because it is not a full-rank state.
In this section, we develop a technique that provides the
first rapid mixing result for a class of general noncommut-
ing Hamiltonians.

We focus on the Lindbladian dynamics without coherent
terms, i.e.,

dp 1
EZ’CLO] :ZKapKZ_E{Kszp} (41)

=L

a.e

Although the coherent term is removed, the fixed point of
the above Lindblad dynamics is still the ground state
of the Hamiltonian H, since the jump operator still depends
on the Hamiltonian. For concreteness, consider a local
Hamiltonian H over a D-dimensional lattice of spin
systems A = [0, L] with the following form [the system
size is N = (L + 1)P]:
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H=Hy+H ==Y Zi+e) h h]l < 1. (42)
i J

Here, Hy = -, Z; is referred to as the noninteracting
term because its indices do not overlap. The choice
of Z; as the noninteracting term is made for convenience,
and can be substituted with other simple, gapped local
terms that also have non-overlapping indices. We assume
the interacting term H, is an (rg,[)-geometrically local
Hamiltonian (see Appendix A). A specific example of the
Hamiltonian in Eq. (42) is the D-dimensional TFIM model,
which is a (2,2D + 1)-local Hamiltonian. The parameter &
is called the interaction strength.

For the Hamiltonian (42), it is sufficient to choose
{A,} = {X;} e to be the set of all single Pauli X matrices
as coupling operators. This is because if the interaction
strength & = 0, then the dissipative dynamics for the non-
interacting problem is ergodic and the mixing time scales as
O(log N). Our main result is that there exists a critical
interaction strength £* independent of L (and thus N), so
that for all e < ¢&*, the scaling of the mixing time
remains O(log N).

Theorem 2. (Informal) Consider a gapped Hamiltonian
H in the form of (42) defined on a D-dimensional lattice
A=10,L]P, and N = (L +1)P is the system size. Let
{A.} = {X;};ca be a set of coupling operators and {K, }
be the corresponding jump operators defined via Eq. (4).
Consider the Lindblad operator without the coherent term
(41). Then there exists a constant £* independent of the
system size such that when € < ¢*, we have

Tmix (1) = O(log(N/n)), (43)

where 7, (17) is defined in (6).

The rigorous statement of Theorem 2 and its proof are
given in Appendix H. Our proof is inspired by recent
analyses of mixing times for quantum Gibbs samplers [39].
The analysis in [39] avoids relying on the invertibility of the
fixed point and characterizes convergence through the
decay of the so-called “local oscillator norm,” a quantity
that can be defined for any Lindblad dynamics with a
unique fixed point. In our setting, we employ a modified
local oscillator norm of observables [see Eq. (H5) in
Appendix H]. For the noninteracting Hamiltonian H,
the exponential decay rate of the oscillator norm can be
computed explicitly. Furthermore, both its evolution and its
decay rate remain stable under local perturbations of the
Hamiltonian, which can be rigorously established using the
Lieb-Robinson bound.

C. Rapid ground state preparation of weakly
interacting fermionic systems

In Theorem 2, the noninteracting Hamiltonian is defined
as a sum of single-site Pauli Z operators. In this section, we
extend this result to the fermionic setting. Since free

fermionic systems can be exactly diagonalized, we intro-
duce a more general noninteracting term that permits
coupling between fermionic sites.

We consider a local fermionic Hamiltonian H defined on
a D-dimensional lattice of fermionic systems, A = [0, L],
given by

i J

where (M, ;) is a positive definite Hermitian matrix, and c;
and c; are the creation and annihilation operators at site j.
The terms {;} are local fermionic perturbations and are
parity preserving, meaning that each h; contains an even
number of creation and annihilation operators. We further
assume that Hy is (1,/)-geometrically local and ) ;; h; are
(ro, [)-geometrically local. Specifically, each term in Hj, is
a product of fermionic operators acting on a set of sites
whose Manhattan diameter is at most 1, and each A j is a
product of fermionic operators acting on a set of sites
whose Manhattan diameter is at most ry. In addition, each

site ¢ appears in at most / nontrivial cjc ; and h; terms.

For Eq. (44), we choose {A,} = {c]. ¢;};c to be the set
of all single fermionic operators as coupling operators.
We show that the mixing time of the Lindblad dynamics for
the fermionic system (44) also scales logarithmically with
the system size for sufficiently small e. This is summarized
in the following theorem:

Theorem 3. (Informal) Consider a gapped fermionic
Hamiltonian H in the form of (44) defined on a D-
dimensional lattice A =[0,L]°?, and N = (L +1)? is
the system size. Let {A,} = {c].c;};cpn be a set of
coupling operators and {K,} be the corresponding jump
operators defined via Eq. (4). Consider the Lindblad
operator without the coherent term (41). Then there exists
a constant £* independent of the system size such that when
e < €*, we have

Tmix (17) = ©(log(N/n)), (45)

where 7., (1) is defined in (B7).

Theorem 11, the rigorous version of Theorem 3, is
proven in Appendix I, where further technical details are
provided. Similar to Theorem 2, the proof of the above
theorem uses the oscillator norm of observables. On the
other hand, we note that the creation and annihilation
operators are nonlocal in the spin basis after applying the
Jordan-Wigner transformation. As a result, the oscillator
norm defined in (H5) is not suitable for fermionic systems.
A proper definition of the oscillator norm requires the
notion of the fermionic partial trace that is compatible with
the canonical anticommutation relation (CAR); see
Appendixes I (I4) and (I8) for details.
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Additionally, we note that although the perturbation
terms in both Theorems 2 and 3 are assumed to be local
for simplicity, the resulting perturbation in the jump
operator K is not strictly local. Instead, under a suitable
choice of f(¢) (decaying rapidly in |7]), the perturbation in
K becomes quasilocal, which is sufficient to establish the
stability of the evolution of the local oscillator norm.
Consequently, our results extend naturally to quasilocal
perturbations, as these also induce quasilocal perturbations
to the jump operator K.

VII. DISCUSSION

This work significantly strengthens the evidence that
dissipative dynamics is a powerful method for preparing
ground states for a wide class of noncommuting
Hamiltonians. A variety of dissipative mechanisms exist,
such as imaginary-time evolution (ITE) [78-80]. However,
implementing ITE via the operator e~*¥ does not readily
yield a completely positive trace-preserving (CPTP) map.
Existing approaches often rely on variational Ansdgize or
tomography-based procedures. By contrast, Lindblad
dynamics provides a nonvariational and inherently CPTP
process that can be efficiently implemented on fault-
tolerant quantum hardware.

We have shown in Theorem 1 that a carefully designed
Lindblad dynamics succeeds in preparing the ground states
of quadratic Majorana Hamiltonians, and have proven in
Theorem 2 its effectiveness for nonintegrable but weakly
interacting spin Hamiltonians. Our tensor-network simu-
lations suggest that these methods can remain effective
beyond the reach of our rigorous analysis. For fermionic
systems, our Theorem 3 generalizes the recent work of
[41,81], which establishes the spectral gap for Gibbs state
preparation in perturbed fermionic systems. Our result
extends this to the ground state (zero temperature). Our
result enhances the spectral gap bound (also called fast
mixing) at finite temperatures from Refs. [41,81] to the
stronger notion of rapid mixing, and proves rapid mixing at
zero temperature. We note that Theorem 3 imposes certain
restrictions on the choice of the noninteracting term.
Removing these restrictions and extending our result to
efficient low-temperature thermal state preparation remain
interesting directions for future work. Additionally, inves-
tigating spin systems with long-range interactions may
provide further insights into the mixing properties of
dissipative processes.

We also note that Lindblad dynamics with jump oper-
ators of the form (4) are closely related to cooling and
thermalization protocols based on weakly coupled system-
bath interactions [13,47,48,61], including several that
appeared after the initial submission of the present work
[82—87]. Theoretical justification of the end-to-end effi-
ciency of such protocols requires mixing time analysis (see
Sec. II). Our work provides the first rigorous mixing time
analysis for a number of physical, noncommuting

Hamiltonians, and we expect that these results will inform
the future development of dissipative ground-state prepa-
ration protocols.

Recent numerical results also show that dissipative state
preparation can be more robust to decoherence than
adiabatic state preparation [88]. A similar phenomenon
has been observed experimentally showing that the lifetime
of dissipatively prepared states can be much longer than the
coherence times of physical qubits [89,90]. A rigorous
understanding of the source of such robustness would be an
interesting direction for future research.

A key open question is whether quantum computers
simulating dissipative dynamics can tackle classically hard
ground-state problems. Viewing ground-state preparation
as a minimization problem, there exist instances where
finding even a local minimum is classically hard, yet
Lindblad dynamics can efficiently achieve this quantumly
[42]. In the case of [42], the local and global minima of the
energy coincide, resulting in a single-phase ground state.
Many challenging physical Hamiltonians involve resolving
multiple phases with nearly degenerate energy levels,
which typically lie outside the perturbative regime. A
prominent example is the phase diagram of the two-
dimensional Hubbard model. It would be instructive to
compare dissipative algorithms with a broad class of
classical approaches such as those based on variational
states or quantum Monte Carlo. While a detailed bench-
marking study is beyond our current scope, we emphasize
that dissipative dynamics can, in principle, explore low-
energy subspaces efficiently even in beyond one-dimen-
sional settings and in settings where classical projector
Monte Carlo methods suffer from the sign problem, as in
frustrated or fermionic systems. Further theoretical analysis
and classical simulations may be instrumental in quantify-
ing the scope of the quantum advantage in these more
complex scenarios. The codes that support this study are
available on GitHub via [91].
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APPENDIX A: NOTATION

For a matrix A€ CM*V, let A*, AT, A" be the complex
conjugation, transpose, and Hermitian transpose (or
adjoint) of A, respectively. Unless specified otherwise,
Al = ||A||l, denotes the operator norm, and ||A||, =
Tr(VATA) denotes the 1-norm or the trace norm.
The trace distance between two states p, o is D(p,0) =
%HP—GHI. We write A =0 (A>0) for a positive semi-
definite (definite) matrix, A > Bif A—B>0,and A<B
if B> A.

We adopt the following asymptotic notations beside the
usual big O one. We write f = Q(g) if g=O(f); f =
0(g) if f = O(g) and g = O(f). The notations O, Q, © are
used to suppress subdominant polylogarithmic factors.
Specifically, f = O(g) if f = O(gpolylog(g)): f = Q(9g)
if f = Q(gpolylog(g)); f = ©(g) if f = ©(gpolylog(g)).
Note that these tilde notations do not remove or suppress

dominant polylogarithmic factors. For instance, if
f = O(log gloglog g), then we write f = O(log g) instead
of f=0(1).

In this paper, we consider spin systems on a D-dimen-
sional lattice A = [0, L] for some integer L > 0. The total
number of lattice sites is N = (L + 1)P. We measure the
distance between i, j€ A using the Manhattan distance
(with or without the periodic boundary condition). For
JEA, let B;(r) be the set of indices in A with a Manhattan
distance at most r to the site j. If an operator O € C2"*2" can
be decomposed as O =} ;5 O;, where each O; is
supported on B;(r), then O is called an r-geometrically
local Hamiltonian. If each site i € A also appears in at most /

non-trivial O terms, then O is called an (r, 1)-geometrically

local Hamiltonian. Given C, u > 0, if O can be decomposed
as 0=),,0, where each O0,=)}.c,0,; is
r-geometrically local and satisfies

max||0, ;|| < Cexp(—ur), (A1)
JEA

then O is called a (C, u)-quasi-local operator.

The definition above can be directly generalized to
fermionic operators on a lattice A. We refer readers to,
e.g., [41] and Definition 7 in [93].

APPENDIX B: COMPARISON OF MIXING TIME
METRICS

The following inequality, originally due to Fuchs and
van de Graaf [93], plays a central role in our analysis of
converging to ground state.

Theorem 4. (Fuchs—van de Graaf [93] and Sec. IX 2 in

[94]) For two density matrices p, o, let F(p,0) =

Tr[\/piop?] be the fidelity and D(p,s) be the trace
distance. Then

1= F(p,0) <D(p.0) <\/1=F(p.o)*.

Note that the fidelity of quantum states is sometimes
defined as F(p,0)*. When ¢ = |y){(yo| is a pure state,
Theorem 4 can be used to establish a relation between the
trace distance, the energy error, and the infidelity.

Proposition 5. Let {(4;, |y;))} be the eigenpairs of the
Hamiltonian H, ordered such that 1y <4; =4y + A <
A <---, where A >0 is the spectral gap and o =
lwo) (wol is the unique ground state. For any density matrix
p, we have

(B1)

TP =20 <L (1 = F(p.o?) < D(p.0)

4lH T
Tr[Hp] — 4o

r
<\/1=F%*p,0) <
<y (p.o) < A

Proof. Using the spectral decomposition of H we have

H =l = Z(’Ii —Ao)lwi){wil = AZ|‘//i><lI/i| =A(I-o0).

i>1 i>1

(B2)

(B3)

When 6 = |y (wy| is a pure state, the fidelity simplifies to

Tr[(yolplwo)]. Taking expectation in p yields

Tr{(H —4oD)p] 2 AT[(I=0)p] = A(1 - F2(p,c)).  (B4)

Applying the Fuchs—van de Graaf inequality yields the
upper bound for D(p, o).
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Note that

1-F2=(1-F)(1+F)<2(1-F), (B5)

and

T[(H - 4ol )p) <2 H|Telp(1 - o)) = 2| H| (1 - F(p.0)?).

(B6)

Applying the Fuchs—van de Graaf inequality again yields
the lower bound for D(p, o). =

We can also define the fidelity-based and energy-based
mixing times, as given in Eq. (7)(8), to be independent of
the initial state:

T (7) = Maxyy (1300). T (1) = maxey, (1: po).
(B7)
From Proposition 5, we immediately obtain
Toix (411 H 1) <735 (20) < Tin (1) S 7 () S 7 (A1),
(B8)

Thus, when maximizing over all initial states p,, the mixing
times defined via fidelity or energy provide both upper and
lower bounds for the mixing time defined via trace
distance.

APPENDIX C: QUASI-FREE SYSTEMS

1. Jordan-Wigner transformation

We introduce the Jordan-Wigner transformation for
fermionic annihilation and creation operators following
the convention in [95],

o (- =)

j-1
= (H zk> = <H zk>x+ (C1)
k=1
with
1 .
Xj=3(X;=i¥)), X =2(X;+i)), Z;= 2cte;—1.
(C2)
After the Jordan-Wigner transformation,
j-1
XiXjn = X;Z; (sz) (it +¢j1)
k=1
J=1 .
= —iY; <H Zk) (C}+1 + Cj+1)
k=1
:(cj—c';)(c;+l + Cji1). (C3)

Then the 1D TFIM Hamiltonian in (16)

N N-1
H=-g) Zi=J) XXy,
i=1 i=1

can be expressed as

N-1 N
H= —JZ(cj —c;)(c;H +¢jt1) —2ch;cj+gN.
=1 =1

(C4)

We now perform a unitary rotation

(=30 ) om0

This defines a set of 2N Majorana operators, {wp}p .

which are Hermitian operators satisfying the anticommu-
tation relation

p.q=1,....2N. (C6)

{Wp9wq} = WPW[] + Wqu - 6]7(]’
This gives rise to the Majorana form of the Hamiltonian in

Eq. (17):

N-1
= 2[]ZWJ+NWJ+1 + Zngijj+N

2. Quadratic Majorana systems

The general form of a quadratic Majorana Hamiltonian
with 2N modes is

_2thqpq

1<p<g<2N

Z RpgWpWy: (C7)

p.q=1

The coefficient matrix /4 is Hermitian and purely imaginary.
In other words, we may write 7 = —iA, where A is a real
antisymmetric matrix. The eigenvalues of the coefficient
matrix & are thus real and symmetric with respect to 0.
Let {4})_, be the non-negative eigenvalues of h. If
A = ming 1, > 0, then H is called a gapped Hamiltonian
and A is referred to as the spectral gap. Then after a unitary
transformation, we may write

lkblbk + const.

I
-

(C8)
k=1

Here {0, b;} is a set of fermionic annihilation and creation
operators satisfying the canonical anticommutation relation
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(CAR), and is linear in the fermionic operators {c;, c;} in
Eq. (C5). The ground state is the quasivacuum state
satisfying (see, e.g., [96], Chap. 3.3)

bylvac) =0, k=1,....N. (C9)

3. Quasi-free dynamics

We consider a general

Hamiltonian H = Z” L hijwiw;.
Thouless theorem [97],

noninteracting quadratic
According to the

1H\ 71H\

721hs
E w, )ap-

As a result, the jump operator associated with a coupling
operator w, is a linear combination of Majorana operators

(C10)

K,= Af(s)eiH“’wae_iH“'ds
-3 / F(8) e ) 0,5
- Z

Then if the set of coupling operators is {A, = w,},c7
where 7 is some index set, a closed-form equation for the
covariance matrix I',, = (i/2)(w,w, —w,w,) can be
derived as [58] (Proposition 1):

NapWp- (C11)

T =XT+TXT+Y, X=-2ih—Bry, Y= DBing

(C12)

Here the coefficient matrix

By, = Y _[F(=2h)],,[F(=2h)];,

ael

(C13)

Here, B is the sum over all the coefficients of the jump
operators, with By, Bjn, denoting the (entrywise) real
and imaginary parts of B, respectively. Since the filter
function f(w) is supported only on the negative real axis,
the Lindbladian dynamics filters out all positive eigenm-
odes of 4 while simultaneously populating the negative
modes, which contributes to the ground state of the
quadratic Hamiltonian H.

APPENDIX D: ADDITIONAL RESULTS FOR
QUASI-FREE SYSTEMS

1. Quasilocality of jump operators

We plot the heat map of the coupling operator X; in the
computational basis, and the corresponding jump operator

(a) Ci ing operator in C: i Basis (b) Jump Operator in Energy Basis

‘.i

FIG. 14. (a) Matrix elements of a local Pauli operator X, in the
computational basis. (b) Jump operator Ky, associated with
coupling operator X; in the energy basis of the TFIM Hamil-
tonian with N = 8 sites. The lower triangular part vanishes due to
the filter function.

=

w

Ky, in the energy basis in Fig. 14. We find that although X
is very sparse in the computational basis, Ky has signifi-
cantly more nonzero elements in the energy basis enabling
transitions from high energy components to low energy
ones. The filter function forbids transitions from low to
high energy components. Therefore the jump operator is
always an upper triangular matrix in the energy eigenbasis.
Furthermore, the magnitude of the coefficients |£;]* +
¢, n|* decays exponentially as j increases (1 < j < N),
which implies that K, is quasilocal in Majorana operators
(see Fig. 15).

2. Importance of the coherent term

In the case of boundary dissipation with coupling
operators X, Xy, Yy, Yy, the coherent term —i[H, -] plays
a critical role for the system to converge to the ground
state, as illustrated in Fig. 16. Physically, since the jump
operator is localized near the boundary, dissipation
primarily occurs there. The coherent term induces an

0.5+ T

® —— C/
0.44
0.31

{#{j| |Zj| >0.01} =7}
0.21

]

0.11

0.0

0 25 50 75 100 125 150 175 200
J

FIG. 15. Coefficients of the jump operator under Majorana
basis. |{;| is calculated from (18) with A, = X,. System size is
= 100.
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(E(t) — Eo)IN

10-11

10-13 4

0 250 500 750 1000 1250 1500 1750 2000
Lindblad simulation time t

FIG. 16. Convergence of energy in TFIM using
{X|,Xy,Y,Yy} as coupling operators, with and without the
coherent term —i[H,-] in the Lindbladian.

energy flux from the bulk to the boundary, which
effectively reduces the energy.

Mathematically, without the coherent term, the Lindblad
dynamics lacks a unique fixed point. The role of the
coherent term is to lift this large degeneracy, and place
eigenvalues on the imaginary axis. The dissipative term
then slightly perturbs these eigenvalues away from the
imaginary axis, creating a spectral gap that leads to
convergence. This will be rigorously justified in Sec. VI A.

3. Convergence starting from different initial states

We choose an all-ones initial state |1") as the initial state
for boundary-dissipated TFIM. Other parameter settings
are the same in Fig. 5. The results are presented in Fig. 17.
We also observe that A, = ®(N~?), which matches the
scaling of the energy-based mixing time z£, = ©(N?) for
fixed 7.

100 ¢

—e— N=10 = |nverse Liouvillian gap A;?
N=20 @® Energy convergence rate Ky
N=30 10%4 ---- Fitting
O —4— N=40
1014 o= ---- Fitting 1034
2
5 At
I
o
10—2 4
10! AT =0O(N3)
100
1073

APPENDIX E: ADDITIONAL NUMERICAL
RESULTS ON TENSOR NETWORK SIMULATION

A key part of simulating the Lindbladian evolution is the
compression of a sum of M triple MPO products to a single
MPO of bond dimension D on N sites, as described in
Sec. IV. A direct method contracts the three tensors per site
for each term, then explicitly sums the M terms, yielding a
single MPO with bond dimension MD? which can be
compressed using a sweep of QR decompositions and
singular value truncations. The cost of this direct method
scales as O(NM>D?).

An alternative option would be to interleave compres-
sions and contractions, that is, immediately compress back
to bond dimension D after every pairwise MPO multipli-
cation or addition. Such an approach has a better scaling of
O(NMD®). However, this approach can introduce a sig-
nificantly larger error, as the number of compressions
performed is O(NM) rather than O(N) in the pre-
vious case.

To resolve this problem, we employ the fitting method
[68], which iteratively constructs the optimal (in terms of
Frobenius norm) 1D approximation of a tensor network
using only the overlap between the ansatz and the target
network. Since the target is a linear sum of terms, each
overlap can be calculated separately. This leads to a scaling
of O(KMND?3) with K the number of sweeps required to
converge the fitting procedure (typically < 20). The library
quimb [98] enables the fitting of a sum of such MPO
product terms to a single MPO. It also supports the use of
GPUs, which can greatly speed up the computations
dominated by linear algebra operations such as this fitting
routine. We report the results in Fig. 18.

To demonstrate the accuracy of the fitting method, we
calculate Tr(HK ,p,_o,K}) from the bulk-dissipated 1D-
TFIM model with J =1 and g = 1.5, and compress the

1000 1500 2000 2500

Lindblad simulation time t

(a)

0 500

10! 102
Number of qubits N

(b)

FIG. 17. Numerical results for the 1D TFIM (16) with the initial state |1V). (a) Convergence of the energy during Lindblad dynamics.
(b) Scaling of the inverse Liouvillian gap A;' as a function of the system size N. Red points indicate the fitted energy convergence rates

Ky extracted from panel (a).
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= —e— FM-GPU
e
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5]
100.
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Bond dimension
FIG. 18. Compression time of multiplying three N = 20

random tensor networks with the direct method (DM) and fitting
method (FM). The direct method is not applicable for bond
dimension D > 14 due to memory constraints.

triple MPO product K ,pK, using the direct method and the
fitting method. Here K, is the jump operator with coupling
operator X at the fifth site and p,_ ; is the density matrix at
t = 0.1 obtained from the Lindblad dynamics using a bond
dimension of 50. Then, K, and p,_,; are compressed into
MPOs with a reduced bond dimension D ranging from 6 to
14. For each given D, the absolute difference between

Tr(HK ,p,_01K}) computed using the direct method and
the fitting method is very small (see Fig. 19). We note that
for D > 14, the direct method becomes too expensive to
use for comparison, while the fitting method remains
efficient.

Then, we numerically validate that the jump operator can
be compressed into a MPO with relatively low bond
dimension. To this end, we evaluate ||K,|y,)|* for the

Absolute difference
[ [
o o
& L

—
9
=

107°

6 7 8§ 9 10 11 12 13 14
Bond dimension
FIG. 19. Absolute difference of Tr(HK ,p,_o,K,) calculated

using the direct method and the fitting method as the bond
dimension D increases.

1073
2
—o— |[Kaltg) ||
6x 1074
4x107*
5
E’E 3x 107"
2x 1074
1071
5 10 15 20 25 30
System size N
FIG. 20. |[|K,|w,)|* as a function of system size N for the 1D-

TFIM model with a = |L/2]. The bond dimension is set to
D = 50.

1D-TFIM model with J =1 and g = 1.5, using a fixed
bond dimension D = 50, with the coupling operator X
positioned at the center of the chain. We then investigate
how |[[K,|y,)|* scales with increasing system size N.
Ideally, this quantity should remain small since [y,)
belongs to the kernel of the jump operator. Fig. 20 shows
that ||K,,|w,)||* remains approximately 10~ as the system
size grows. This result confirms that a bond dimension of
D = 50 can be sufficiently accurate for representing the
ground state and the jump operators.

Finally, in Fig. 21, we demonstrate the reliability of the
tensor network results by comparing simulations with
different bond dimensions. We consider the bulk dissipa-
tion of an N = 10 one-dimensional TFIM model using
bond dimensions D = 10, 50 and a time step size of
At = 0.025. The relative error is computed using D = 75

100 { == At =0.025,D = 50
AL = 0.025, D = 10
At =0.1,D =50
— At =0.1,D =10
L 107!
o
&
5]
£
=102
o=t
1073.
0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00
Simulation time
FIG. 21. Relative error of energy with different time step sizes

and bond dimensions for 1D TFIM model.
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and At = 0.0125 as the reference (see Fig. 21). For small
simulation times, the dominant source of error is the time
discretization. A large time step size may also lead to
unstable behavior as the simulation time increases.
Furthermore, as the system evolves towards a fixed point,
the error is no longer primarily dictated by time discretiza-
tion, and the bond dimension plays a more significant role.

APPENDIX F: MIXING TIME OF QUASI-FREE
SYSTEMS AND PROOF OF THEOREM 1

In order to characterize the convergence rate of Lindblad
dynamics, one standard approach is to evaluate the
Liouvillian gap. When the dissipative dynamics satisfies
the quantum detailed balance condition (DBC), the
Lindbladian may be transformed into a Hamiltonian under
a similarity transformation, and the Liouvillian gap can be
bounded using techniques for bounding spectral gaps for
quantum many-body Hamiltonians [38,41]. This strategy,
however, cannot be applied to Lindblad dynamics with a
coherent term, which breaks the DBC.

A more general formulation for bounding the spectral
gap may be captured by the hypocoercivity theory, which
was originally formulated in the context of classical kinetic
theory [99] and has recently been applied in the context of
open quantum systems described by Lindblad equations
[100]. However, the formulation in [100] can only be used
to prove the existence of a spectral gap. For quasi-free
dynamics, the spectral gap can also be derived explicitly
from the rapidity spectrum [71] related to the equation of
motion for the covariance matrix.

Even with spectral gap estimates, the problem remains
how to bound convergence of the density matrix in trace
distance. This is because spectral gap estimates only imply

|

1
2

convergence in y? distance [40], and the conversion from
convergence in the y? distance to the trace distance involves
a factor that blows up exponentially as temperature
decreases, making it inapplicable for ground state prepa-
ration when the temperature is zero. A special technique
called hypercontractivity can be applied to quasi-free
quantum groups [64] but also requires the stationary state
to be invertible.

Theorem 1 provides an explicit bound on the conver-
gence in trace distance to the ground state for general quasi-
free dynamics, and its proof is given below.

After the canonical unitary transformation and the
particle hole transformation, we express the quadratic
Hamiltonian H in the canonical form of (C8). Let 71, =
b;bk be the number operator of the kth mode, and N =
>i fix = b'b be the total number operator. Note that all
creation operators b,t increase the energy, while all anni-
hilation operators b; decrease the energy. As a result, the
jump operator must be a linear combination of annihilation
operators alone:

N
K,=>» @b, (F1)
p=1

for some coefficient matrix @, so that K,|vac) = 0.
Define O = ZkN 1 Ek,b,tb, for some positive definite
matrix 2 to be determined. Then

i[H,0] =2y Jln. 0] =20y (k4 = 4)Eubib;.  (F2)
k kl

We may also directly compute

1.
> _KiOK,~>{KiK,.0} =3 (Ki[0.K,]~[0.K]K,)

1 . n
= _EZ <Z(Dpab1'7%:g‘qu)zabl + %:Equ)lab;czq);ubp>
a P P

1 * = = *
= —EZZ);E (Z(Dkaq)pa:pl + :kpq)lmq)lu> bi.
kl ap

Let h = diag({24;}), and define a non-Hermitian Hamil-
tonian (the superscript f means the non-Hermitian matrix is
defined with respect to fermionic creation and annihilation
operators instead of Majorana operators):

1 - S|
thth—EgKlKa:bTh{lhb, hﬁh:zh—idxlﬂ, (F4)

then

(F3)

(F5)

Here the coefficient matrix h{lh is related to that in Eq. (36)
by a similarity transformation.

Under the assumption that h{]h can be diagonalized as
VDV~ for some invertible matrix V and diagonal
matrix D, we now make a choice of the Hermitian
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matrix Z = VV' > 0. Let A = —max,;ReD;; be the non-
Hermitian gap. Then

L7[0] = b'V(D + D*)V'b < —2AbTVVib = —2A0.

(Fo)

This immediately yields the exponential convergence of
the observable O as

Tr{0p(1)] < Tr[Op(0)]e22. (F)
From the definition of E we have
Anin(VVIN < O < A (VYN (F8)

Then the infidelity can be bounded as

1 — (vaclp|vac) < Tr{fp] < W Tr[0p)
1 —2Ar
<y ToPO))e
Amax (VVT + _oAs
< o b (0
— (V) Tr{Rp(0)]e22 (F9)

Finally, by the Fuchs—van de Graaf inequality,

D(p, |vac)(vac|) < /1 — (vac|p|vac)

< k(V)y/Tr[Np(0)]e2". (F10)
Finally, we use Tr[Np(0)] < N for any initial state p(0) and

finish the proof of Theorem 1.

APPENDIX G: MIXING TIME OF 1D TFIM WITH
BOUNDARY DISSIPATION

To simplify the analysis we adopt the “c-cyclic” approxi-
mation in [95,101], and consider the following periodized
version of the TFIM Hamiltonian expressed in fermionic
operators

N-1
JZC—C ]+1+cj+1)

J=1

N
—J(ey—cy)(c) +ep) = Zch;cj +gN. (Gl)
=1

Compared to Eq. (C4), this Hamiltonian introduces a
periodic term. Define the ratio £ = J/g. When & # 1, the
modified Hamiltonian is gapped, and can be exactly
diagonalized as

(G2)

Hyere =29 Abiby— 9> Ay
k k

Here for convenience we assume g = 1, N is even, and
we label the eigenvalues from —(N/2) to (N/2) — 1, with

2k N N
Ak—\/1+52+25cos<%>, k==Zg-L,

which is even with respect to the index k. The annihilation
operators {b;} are given in the form of a Nambu spinor

B Prj + Wi Pij —Wij\ +
m—ijj{(—z )cj+ <42 )cj . (G4)

with coefficients

(G3)

(2/N)'/? s1n(T’k> k=1,...5-1

Prj = " (GS)
(2/N)1/2COS(T/) k=-%,...0
and
2k
vy ==t (1500 (5F) Jour 20 (5 oo
(G6)
Direct calculation shows
X;=ci+cf= Z(ﬂkl(bk +b}),
k
Yy =i(c; —cf (G7)

)= ZWH i(by —
k

For ground state preparation, the corresponding jump
operators simply filter out the energy-increasing b, com-
ponents:

Ky, = /f(s)eimxle_mxds = Z(/’klbk,
k

= /f(s)eiHSYle_iH‘YdS = ZV/klbk-
k

The non-Hermitian Hamiltonian in Theorem 1 can be
written as

(G8)

N |
Hy=b'hl b, K, =iA —50¢' —EWT. (G9)

O(N~2) for large system sizes. This allows us to use first
order perturbation theory to estimate the non-Hermitian
gap. For k =0, we have 4y =1+,
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(G10)

2
2 2y _ “
((00.1 +lI/OA,1) N’

| =

which is large compared to O(N~?). Due to the modifi-
cation to periodic boundary conditions, every eigenvalue
A, with k£ > 0 is doubly degenerate with A, = A_;. This
relation also approximately holds for the 0r1g1na1 TFIM
problem with open boundary conditions. So we apply the
perturbation theory to each two-dimensional space spanned
by the eigenvectors corresponding to the eigenvalue
Ak = A—k' Then

1 .
Azil’]gl(l)l ﬂmin(Mk),
Iy ( Pi Vi Pr 1Pk, +l//k,1l//-k.1>
k= )
Pr 1Pk TYEW k1 (ﬂ%k,l +l//3k,1
(G11)
For each 0 < k < N/2, we have
det My = (@11 — PiaWia)?
52 Sln2(2nk)
= TN ((p%,l + §0zk,1>2
42 smz(zj’\f,k)
=— __N°_ Q(N?). G12

Therefore each M, is invertible and the spectral gap is

positive. In particular, when k = 1, det M, = ®(N~*), and
the magnitude of the entries are
O(N3) O(N?
M1—< (N) & )>. (G13)
O(N7?) O(NT')

Therefore one of the eigenvalues must be ©(N~!). To obtain
det M, = ©(N~*), the other eigenvalue must be @(N73).

APPENDIX H: PROOF OF RAPID GROUND
STATE PREPARATION OF WEAKLY
INTERACTING SPIN SYSTEMS

In this section, we show the rapid ground state prepa-
ration for the perturbed Hamiltonian. First, we introduce
the assumptions of the filter function f, which is similar to
that in [43] (Assumption 12). Our analysis employs the
Gevrey function, a subclass of smooth functions charac-
terized by well-controlled decay of the Fourier coefficients.
This characteristic plays a crucial role in the quadrature
analysis.

Definition 6. (Gevrey function) Let Q C R¢ be a domain.
A complex-valued C* function h:Q — C is a Gevrey
function of order s > 0, if there exist constants C{,C, > 0
such that for every d-tuple of nonnegative integers
a=(a,a,...,a,),

10 ) < CLC . (1)
where |a| = >"¢ | |a;|. For fixed constants C;,Ca,s,

the set of Gevrey functions is denoted by Gi ( ().

Furthermore, G* = ¢, ¢,-09¢, ¢,-

We refer readers to [102,103] for background on the
Gevrey class. We also note that the use of Gevrey class
functions is mainly for simplifying the discretization error
analysis and not essential for the design of the Lindbladian.

Assumption 7. (Filter function in the frequency domain)
Assume ]A‘ in the Fourier domain takes the form

flw) = i(w/8)5(2w).

Here, & is a positive function and belongs to Gevrey
class G3 4 (R)forsomeA;,,A;, > 0anda > 1, mean-

(H2)

ing that
sup | 5 ()] < Ay 1
for any neN. Also, supp(it) C [-1 ] i(w) =Q(1)
when we[-1/2,1/2], and (- /4) In addition,
we assume DEG (R), ||[d/(da))] Il.1=O(1),
supp(?) C(—o0, 0], and 9(—4) = 1.
We define the perturbed Hamiltonian as
(H3)

H, = —ZZ,» + eZhj.
L J

Compared to [43] (Assumption 12), the above
assumption sets A = 1/2 and S, = 4, which is sufficient
to ensure (H13). First, setting A = 1/2 is adequate for our
analysis since the spectral gap of Hy, is one, implying that
the spectral gap of H, remains greater than 1/2 when ¢ is
sufficiently small. Second, choosing S, =4 is sufficient
because the coupling operator A; = X; modifies the energy
of H, by at most one, ensuring that the energy decay of H,
can also be bounded by 4 when ¢ is sufficiently small.

Now, we are ready to present the rigorous version of
Theorem 2:

Theorem 8. (Rigorous version of Theorem 2) Assume H
is a (ry, [)-local Hamiltonian that takes the form of (42),
choose the coupling operators {A,} = {X,},c,, and the
filter function f satisfies Assumption 7. There exists a
constant €* only depends on k, [, D such that when ¢ < &*,
we have

llexp(Lt)p—wo) (wolll; <n, Yt=Q(log(N/n)), p

where N = (L +1)P

O((rol)=®)).
The proof of Theorem 8 is based on the analysis of the
convergence of observables in the Heisenberg picture,

is the system size. Here, &" =
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which is inspired by [39]. Specifically, the evolution of any
observable O in the Heisenberg picture follows the dynam-
ics O(t) = €£'(0). Since L (I) = 0 for any Lindbladian,
if the Lindblad dynamics p(z) = exp(Lt)p has a unique
fixed point, then the identity operator / is also the unique
fixed point of the dynamics e£. In other words,
lim,_,o, O(t) = yoI for some constant y,. For a index
set A C A, define the local oscillation operator

54(0) = o—ﬁu@m‘(o), (H4)

where Tr 4(O) is the partial trace of O with respect to the
indices in A. Then 64(O) measures the local deviation
of O from the identity. Furthermore, we expect that
lim,_, 64(O(t)) = 0 for any nonempty A and observable
O. For a given index i € A, for simplicity we identify i with
its singleton set {i}. Then Ref. [39] quantifies the con-
vergence of the Lindblad dynamics by means of the
convergence of the oscillator norm Y, [|6;(0)]].

For ground state preparation, we first modify the
definition of the oscillator norm as follows:

which will be used to measure the progress of the
dynamics along the diagonal and off-diagonal directions,
respectively.

Then using the characterization of the trace distance via
observables, the trace distance between p(¢) and o =
lwo) (wo| can be bounded as

lp(2) = ally = sup Tr(O(p(2) — o))

[oll<1
< sup [|O(t) = Tr(0(1)) /2" [|p(0) = o],
(H8)

loj<1
< sup [[|0(1)[[[[lp(0) = o],
loj<1

Now, to prove Theorem 8§, it suffices to prove the
following proposition. We will prove this proposition after
giving the proof of Theorem 8.

Proposition 9. Under the conditions of Theorem 8, for
any observable O such that ||O]| < 1, we have

IO < [lloO)[| exp(=1/4). (H9)

Proof of Theorem 8. Using the relation between the

I[Ollf = Z\Hé oPi(O)|| + 160 Q:(O)|.  (HS5) 1-norm and the trace with observables,
1€
Here, llp(2) =olly = sup Tr(O(p(1) —0))
lol<1
P;(0) = 10;){0;{0;{010;) + [1,){1;[{1;]O[1;),  (H6) < Hsolﬁplno(t) =Tr(0(1))/2"]|[|p(0) o],
<
and (H10)
0:(0) = 10:)(1:|0;|011;) + [1:)(0:|(1;]0[0;),  (H7)  We then notice
|
Y (i)
0(1) = T(0(0)/2" = 5,(0(0) + Y50 (M @ Trg iy (0(0) )
i—2
Thus, we have
,,,, i-1
10() - T(0())/2"] < 31(0 ( S @ T (00))|
..... =1
~ (0 M @ i, ) 0500
N
Z )l < Z 16;0 PA(O(0)]| + 1160 Qi(O (1)) | = [HOM)]I].
This provides a proof of (H8). Next, according to Proposition 9 and ||p — |wo) (wol|l, < 2, we have
[lexp(L2)p = lwo) (wolll; < 2[[0(0)][|exp(—t/4) < 8N exp(—1/4),
where we use |||O(0)||| < 4N in the last inequality. This concludes the proof. n
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In the following part of the section, we focus on the proof When & = 0,
of Proposition 9. First, the jump operator is

K= /_ ™ F(1) expliHon) X, exp(—iHot)dt

= /oof(t) exp(iH t)A; exp(—iH t)dt
- = J(=2)10;)(1;] = 10;)(11. (H13)

_ / " (1) exp(iH, )X exp(—iH,)dr,  (H11)
o We start with the evolution of the observable P;(O(1)):

0,P,(0(1)) = P,(LL,(0(1))) + P, (Zc )

and the corresponding dissipative term in the Lindbladian is

‘Cj,e(p) stp - {K;e 167.0}' (le) JF
which implies
|
05,0 Pi(O(1)) = 8;0 Pi(L],(O(1))) + ;0 P; <ZC;&-(0(I))>
J#i
=81 Pi(Lip(0(1)) +8ioPi(L](0(1) = £1o(0(1)) + 3 L], (6:2 Pi(0(1)) + [&-oPi,Zc}f} (0())
J#i J#i
(1) + Y L1 (60 PAO() + 6,0 ALL(0() ~ £1,(0 [5 USRI
d J# J#
ecaying part
contractive part
Here, the second term is contractive in the sense that || exp (3, £ )||°o_m < 1 for any 7 > 0, which ensures that the

perturbation error does not grow exponentially with time ¢. In the last equahty, we use the fact that §; o P; (C 0(0(1))) =
—8; 0 P;(O(r)) by direct calculation. Following the similar calculations in [39] [Appendix A. Sec. I (A6 A8)], we obtain

\|5,-0P,-(0(t))||Sexp(—t)HéfoPi(O)ll+Atexp(s—t) 5;0Pi(L].(0(s)) = L1,(0( [ 0P L ] ds.
(H14)
Similar to the above calculation, for Q;(O(t)), we also have
040,00 =510 0, (£1,(0(0) + 5,00, T £ (0(0)
7
:5iOQi(£ZO(O(I)))+5iOQi(£; (0(1)) = L], (0(1) )+Z£ (6;°0;(0(1)) + |:5iOinZ£;,g:| (0(1)
i i
=——5 (Qi(0(1)+ Y LT.(5120:(0(1))) + 812 0:( L] (0(1)) = LT (O [5 00y L} }
%/—/ 2 T
decaying part contractive part
This implies
16:(Q:i(0())) | < exp(=1/2)|5;(Q;(0))]|
+ [ expl(s = 0/2) |50 (£1,(0(5)) = £]o(0(5)) + {5 0.3 L] ] (0(s)| das. (H15)

Combining (H14) and (H15), we obtain
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18P0+ 50N < exp(=1/2)([I8:(P:(O))| + |52 (O]
+ [Texp(s=0)6:0P(£1.(0(6)) - £1o(0()) + [a-op,»,z #cjgy (5))

+Atexp((s—t)/2)

ds

[Se]

ds.

(o)

(H16)

5iOQi(‘C:'r,s(O(S)) ‘CTO(O [5OQ”Z#: 18]

To bound the last two terms in Eq. (H16). We introduce a lemma to bound the second and third terms in (H16). First,
given lattice i and radius r > 0, we define H 2”’) as the Hamiltonian that consists of the Hamiltonian terms of H, on a ball of

L;, are defined according to (H11) and (H12) with Hé’*’). Then we have the

radius r centered at lattice i. K7,
following lemma:
Lemma 10. Under conditions of Theorem 8 and let J = r(’)) [, for any r > 1, we have

r r— 1
17 = £l < 60 = O3+ expl=Ca(r/ 41 7/2) ).
1£7e = Liolloso < 1) = Ole(Jlog?(1/) + 1)P1). (H17)
With Lemma 10, we are ready to provide the proof of Proposition 9.

Proof of Proposition 9. The proof follows a similar strategy to that in [39] (Appendix A. Sec. I). We first claim that there
exists k§ and y§ such that

116; 2 Pi. £}, J(O)1. 118:© Qis £]J(O) < D k(113 0 Pu(O) + |13 © Qu(O)]) (H18)
k

and

16; 0 Pi(£],.(0) = L1o(0))]l.

0i(L7.(0) = LI, (0))l < Y k(I8¢ o Pe(O)]| + [18c0 Qk(0)]))  (H19)
k

with >, ;i K j + >, 7% is smaller than a constant that is independent of the system size.

Denote by d(i, j) the Manhattan distance between sites i, j € A and I'(rg) = ., &(r) = O(27") when ry > 4kl. We
first show (H18) and calculate . Following the calculations in [39] (Appendix B) and letting B;(r) = {j|d(i, j) < r}, we
get

116:0P L1)(0)|_ = [I[8:0Pi (L]~ £S5 (0)]]
<|Ci—c_ |8oPi(0 >>||m+2||<c*» —c‘?<"’~"”><0>||m
< N &G0 POl +2 S (L5 = (L5585, (O]
r>d(i,j) r>d(i,j)
<TG PO +2 Y () Y (18c0Pe(0))]l oo+ 180 Q4 (0)]lo)
r>d(i.j) d(j.k)<r
=T (d(i,}))]|6;0P:(0 +zz 180 P(0)) |0 + 160 01 (0)) |0 )T (max (d(i, ), d(j.k))).  (H20)

Let ry > 0, to be determined later. For d(i, j) > ro, we have

. {F(d(z:j)), k=i (H21)

0T ar(max(d(i, ), d(j. K))), k# i,

For d(i, j) < rg, we can bound the commutator as follows:
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1180 Py, £7.](O)l, < [1[8;0 Pr (L], = LEDNO)l, + 1[8:0 P (L7 = LTG0,
< (n(e) + T(ro))[18:° Pi(0)) oo +2D _¢(r) Y (1862 Pe(0))lleo + 184 © Qs (0)) )

r>ro d(k,j)<r

+21(e) D> ([18c° Pr(0))llo + I8k 0 04(0)) )

d(k.j)<ro

< (n(e) + T(r0))[8; 0 Pi(0))l| + 2 _T(max (ro, d(k. /))) (| © Pe(0)) | + |k © Q4(0))| )

+21(e) Y (180 P(0)) oo + (184 0u(0))lluo). (H22)

d(k.j)<ry

Therefore, for d(i,j) < ry we have

. { 3n(e) +30(ry), d(k,j)<rg (H23)

Ky . = .
Vo Lard(k. ). d(k.j) > ro
Similarly, we can also show (H19) and calculate y. We have

16;0 Pi(L], = LI,) (0]l <||5'OP‘(£T = L5(0) |, + 113:0 Pi(LE" = L1)(0)],
Z 150 P(0)) 1o +2 (1) (10 Pe(O))ll o + [16k © Qi (0)) )

(i.k)<rg r2rg d(ik)<r

) D lI8oPi(0)]lw

d(ik)<r,
+2) _T(max (rg, d(i. k))) (|18 © Pi(0))l|eo + 16 © Qx(0))lo)- (H24)
J
This implies

. {n(e) +20(ry), d(i,k) <rg

T ordi k), d(i k) > . (F25)

Similar to the calculations in [39] (Appendix A.2), we get

K_ZK,,+Zyk<4 2ry + 1)y +20222m+ 2P (m). (H26)

i,j#i m'>ry m>m'

Choosing r, = ®(max{J, D*}) sufficiently large so that the second term is smaller than 1/8, we then set & small enough so
that

e=0(2ro+ 1)2P(Jlog*(1/e) + 1)7PI71),

we have k < 1/4.
Plugging (H18) and (H19) into (H16), we have

18: (PO + [I8;(Q:(O(0)))]| < exp(=2/2)([|5;(P:(0))]| + 115:(Q:(0))]])
+ KAIGXP((S —0)/2)([16:(Pi(O(s)))]| + [16:(Q:(O(s)))[)ds - (H27)

Because k < 1/4, we can bound ||§;(P;(0(1)))|| + ||6:(Q;(0(1)))]|:
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IIIO()III—Z(|I5< (OO + 18:(Qi(0WNI) < e > _(18:(P(0))l + [I8:(Qi(0))]) (H28)

This concludes the proof. u
Finally, we provide the proof of Lemma 10.
Proof of Lemma 10. According to Lemma 16 in [43] with A = 1/2 and S, = 4 (see the detailed explanation about this
choice under Assumption 7), the filter function in the time domain satisfies |f(s)] = O(C, sexp(—C, s|s|'/*), where
C, s, Cy s are constants that only depend on A, ,, A, ,,A; ,, A, , in Assumption 7. This directly implies

(sl + D)l < €, (H29)

where C only depends on A, ,,,A,,. A} ,,A,,, and a.
We first show the bound of Hﬁ - £10||°o_)oo Note

H‘C:re _‘CT

10llcoaq

S2(|K el F Kol MK e = Kjolly, < 4L K — Kol (H30)

Let J = rl. Next,

||Kj,g — Kj,0||00 = H / f(t)[exp(iHEt)Xj exp(—iH,t) — exp(iHot)Xj exp(—iHt)]dr

[Se]

= H /_ " £(0)exp(iH,0)X, exp(=iH,1) — exp(iHY" )X, exp(=iHI") 1)]ds

[l<11X; | min{ " 2y

+ / £ [exp(iHY" 1)X  exp(—iHI1) — exp(iHY" )X exp(—iHY " 1)]dr

/ f(t) exp(zH( >)X exp(— zH )—exp(iHot)Xjexp(—iHot)}dt

=0 Vr>1 I

}+ | exp(iHY 1) — exp(zH )||)dt

}+ |9 —Hé”’|r|r|)dr

} +e(r+ )Dl|t|)dt
)l

E/_M |f(l)|dt—i-/|t|>ﬁ f(t)|d[+g(r+1)Dl>
-

r—1
/ l L ——dr+ / exp(—Cy p|t|V/*)dt + e(r + 1)Dl>
‘[|<4J(' M>4Jﬂ

~ofz / .

t‘ 4!1':

8

8

E
5
\‘A_._/E._/H
~
<
E

L
s /mf
[

exp(—Cy f|t|V/)dt + e(r + 1)P 1>

In the last third equality, we use (H29).
Next, to bound the second term, we let C, ¢, be the constant that depends on a and C,, such that alu®!| <
exp(Cy pu/2) for any |u| > C,c, . When r > 4JeCy,

/ exp(—Cy ft|V/*)dt = 2/
\t\>4—;e u>(4—h

4 r \1/a
— exp (-Cop( =) /2).
Coy P < 2 (416) / >

where we let u = 1'/* in the first equality. In the inequality, we use a|u|*~! < exp(C, ju/2) for |u| > Coc, -

a. sz

™ exp(=C ) <2 / - exp(=Calul/2)d

L¢>(4J
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In conclusion, we can set r =

1
1K= Kioll, = 0[5+

O(max {Jlog*(1/¢), JCoc,, '}) to obtain

/l exp(—Cy s |t|/*)dt + e(r + I)Dl>
t|>75

4Je

:O<21’+exp< Caf(r/ (40€))"/%/2) + e(r + 1 )Dl).

Plugging this into (H30), we obtain

n(e) = 0(e(Jlog®(1/e) + 1)P1). (H31)
Next we calculate the function f(r)
125 = L2 oo S 200Kl + IKGH K = K52, < 4l 1K e = K52
The term ||K’, — K’7'|| can be calculated using Lieb-Robinson bound:
1K, = K2, H/ F(0)fexp(iHY" ))X exp(—iH!"t) — exp(ngj’r_l)t)Xjexp(—iHéj’r_l)t)]dt
(/1) 7y g (r=1) oy (j.r=1)
f )| exp(iH"1)X jexp(—iH"1) — exp(iH{"™ 1) X jexp(—iH; )|| dt
2J|t
/ 100 min {0 o1,
—0 / exp(—Cs[i]V/2)dr ). (H32)
2r lt[>772 ‘

As a result, we get

£(0) = O( 3 +ex(=Co 1/ (40611 2) ).

This concludes the proof. [

APPENDIX I: PROOF OF RAPID GROUND
STATE PREPARATION OF WEAKLY
INTERACTING FERMIONIC SYSTEMS

We first present the rigorous version of Theorem 3 for
weakly interacting fermionic systems.

Theorem 11. (Rigorous version of Theorem 3). Consider
a gapped fermionic Hamiltonian H in the form of (44)
defined on a D-dimensional lattice A = [0, L]P, and N =
(L +1)P is the system size. Let {A,} = {c}.c;};cA be a
set of coupling operators and {K,} be the corresponding
jump operators defined via Eq. (4). Assume the following
conditions hold:

(i) M > A for some A > 0.

(i) The filter functions f is chosen properly to satisfy

fw)=1, Vvel[-|M|.-A], and
JAC(I/) =0, Vv>0,
max{|f(1)[} < C,|[M| exp(=Cy|t/A]'), (I1)

where C;, C,, a > 0 are constants independent of N.
Consider the Lindblad dynamics in Eq. (41). Then there
exists a constant ¢* independent of L and N such that when
e < €*, we have

Tmix (17) = ©(log(N/n)), (12)
where ,y;, (17) is defined in (B7). Here, e* = O(((max; ;| M, ;|)
rol/8)7 P M| ™).

The existence of f follows from [103]. According to the
proof of [103] (Corollary 2.8), there exists a function g
belonging to G% , (R) for some A, ,, A, > 0 such that
g(x) =1whenx>1,0<g(x) <1whenxe[l/2,1], and
g(x) =0 when x < 1/2. According to [43] (Lemmas 14
and 15), f(v) = g(-v/D)g((|M|| + 1 +1)/A) satisfies
the condition (I1).
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Before proving Theorem 11, we first introduce the
fermionic partial trace and the fermionic local oscillation
operator, which are essential for analyzing the fermionic
systems.

We introduce a shorthand notation |1;) = ¢||vac) and
|0;) = ¢;c}|vac) for all i. Then with some abuse of

notation, we require that c; s cT “anticommutes” with

1), (1;] for all i # j, and “commutes with [0;), (0;| for

T

all 7 # j. For instance, consider O = c¢|c,c,c3, then

(1,|0[1,) = (=1)%c{{Lyleles| Lh)es = cfes.  (I3)

Here the factor (—1)? is due to the convention that (1,] is

required to anticommute with cJ{, and |1,) is required to
anticommute with c¢;. This is analogous to operations in
spin systems, where commuting a state past spin operators
acting on different sites follows a similar rule. For example,
in a two-site system, we can rewrite X, X,|1,) = X;[1,)X5,
treating the operators sequentially while preserving their
site-specific action.

More generally, for any observable O, the fermionic
partial trace on the ith lattice, denoted by Tr,-f , can be
defined as

Tt/ (0) = (0;]0]0;) + (1,0[1,). (14)
The tensor product with the identity matrix in (H4) now
takes the form

f —
Ti0)= )
Z[aieri mod 2=0

aj:bj:]

+2 Z:
Z[aﬁ»b; mod 2=0

ai:h,-:()

Here we note clc; + c;c! =1= (c))°(c;)°, and partial
trace does not change the parity of the operator.
Using the notational convention |1;) = c;|vac>, cll;) =
: :
—|1j)crs and ¢i[15)

Zgab H(e1)”

S e )
x eh)(en)". (19

= —|1;)c}, we may check that

- ({0j1(c)) 4 (e;)"0y)

When O has even parity, (—I)Zi#f“"Mi =1 for all non-
vanishing terms. This proves the equivalence between the
partial trace defined in Eq. (I8) and (I5).

ga,b(ci)al(cl)b]

Gan(c) ()

cc—|—cc

Ti(0) = 5 (o), (5

where we have used that ¢ c; + c;c; =1 is even in the
fermionic operators and commutes with all c;, c; when

i # j. The fermionic local oscillation operator is then
defined as

8/(0)

i(0) =0-T,(0). (I6)

Remark 12. To simplify the calculation and definiton of
the oscillator norm, we also introduce a more explicit
definition of the fermionic partial trace that does not depend
on the convention of commuting states past operators. This
definition is equivalent to that in Eq. (I5) for operators of
even parity.

For any observable O, we express it in fermionic form
with increasing order, meaning

0= Zgab Cl : (le)a" (Cn)b"’ (17)

where a,b € {0,1}" and ¢;, clT are creation and annihila-
tion operators on ith site.

We will only consider operators of even parity. Define
the fermionic partial trace as

(e +cje]) - (eh) ()

(cj»cj + cjc;) . (cj,)“"(cn)bn. (18)

Following the fermionic notation convention and
Remark 12, we may generalize the definition of P;, Q;
in (H6) and (H7) to fermionic systems. We first rewrite O as
0=>1 -0(c ¢)%(c;)" ®r O, where ® denotes the
fermionic tensor product, which follows the increasing
order convention as in (I7). Specifically, { 0!, , } are defined
in the following:

cje;®r O} =clc;0clc;—clOc;,
(c)’(c;)’ ®F 060 =cic]Ocic] +clOc,,
c;®r O cj- ®F

i —
0.1 = cicC| ‘ocle;, 10fcc0cc

(110)
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Then we have two projection operators that can be
expressed as follows:

Pi(0) =Y (c))(c))" & O (11)
a;=b;
and
0,(0) = Z(Cj)ui(ci)bi QF 0. (12)

a;#b;

Because of the fact the even parity of the density operator
p, which implies that Tr(Op) = 0 if O has odd parity, we
only consider even parity observables in our analysis. We
can define the fermionic oscillator norm as

N
ol =" |/« Pi(0)|
i=1

We note that several alternative expressions for the
fermionic partial trace exist in the literature (see, e.g.,
[104,105]). However, we emphasize that the fermionic
partial trace operation is uniquely defined once the ordering
of the sites is fixed and the fermionic states satisfy the
parity superselection rule (SSR), i.e., a fermionic state
should not involve a coherent superposition between states
with an even and an odd number of particles.

Next, we summarize the properties of the fermionic
partial trace (I5) [or (I8)] and the fermionic local oscillation
operator (I6) in the following.

(1) The fermionic partial trace operators {T,} commute

with each other, meaning T;oT;(0) =T;oT;(0).

(2) The fermionic partial trace is contractive in operator

norm, meaning ||T;|| e < 1.

(3) The fermionic local oscillation operator can control

the convergence of observables.

Lemma 13. For any observable O that takes the form of
(I7), we have

(113)

i oQi(O)Hoo

10 = 1/2"Tx(0)|, < Z 16/(0) o-

(4) The fermionic partial trace and local fermionic
oscillation operator commute with operators that
act on different sites:

Lemma 14. Given any superoperator F:

F(0) (114)

=pip2- - P109192 - G

where p;,q;€{ci.cl};c;. If 1+ r is an even number,
j¢1, and O has even parity, [F,T;J(0)=0 and

7.5/)(0) =
According to the above lemma, it is straightforward to
see that Eis commutes with 65- if the site j is not within the

fermionic support of EL..

(5) The fermionic partial trace generates the local fixed

point for local Lindbladian operators:

Lemma 15. Assume L' can be written into the summa-
tions of (I14) such that every term satisfies the conditions of
Lemma 4. Given a subset J € {1, ..., N} and an observable
O that has even parity, if I C J, we have L(T,(0)) =0,
where T;(0) =11,¢,T;(0).

In the following part of this section, we will first prove
Theorem 11 using the above properties. In Appendix 11,
we first handle the noninteracting case using the new
fermionic oscillator norm. Then, in Appendix 12, we
extend the proof to the perturbative regime. The proof of
above properties of the fermionic partial trace and the
fermionic local oscillation operator will be given in
Appendix I3 for completeness.

1. Noninteracting case

In this section, we consider the noninteracting case with
e =0 and H = H,. We first calculate K;:
(i) When A; = ¢,

K; _/ f(t)exp(iHyt)c; exp(—iHyt)dt
— ZC / f S) —zMs
- Zcq(f )zq Ci,

where we use f(—M) as an identity according to the

conditions of f.
(i) When A; = ¢],

/ f(t) exp(lHOt)c exp(—iHyt)dt
=3k [ s 0
= Zcq F(M)),; =0,

q

where we use f(M) = 0 according to the conditions

of f.

Thus, we have the Lindbladian dynamics:

ar Llp] = ZCiﬂCi _E{Ci cinp} -

=L (p)

Now, we first prove Theorem 11 for the simplest
case € = 0.
Proof of Theorem 11 when €=0. Let O =

S smo (€))% (ci)? ®p O, where ®p is the fermionic
tensor product that follows the increasing order as in

011004-32



RAPID QUANTUM GROUND STATE PREPARATION VIA ... PHYS. REV. X 16, 011004 (2026)

the form of (I7). Here,

cie;®p O =cle;0cc;—cOc;, ¢ ®F O}y =c[ciOcic],
¢ ®r 0f, =cic]Oc]c; (c])0(c;)’ ®F O = cic]Ocicl +cfOc;.
We notice
TO 1 T 0\ = T Oi 1 Oi 1 il Oi
c; vc; _E{Ci ¢;, 0} = —c;c; @ 11 _Eci ®r Op, _Eci ®F O -

Here, we did not generate parity sign in the first term because O has even parity. This implies

R P i Ly i
(cici —cici) ® 01, 2‘31 ®r 0y 2Ci ®r O -

N[ =

1
5{ (CZOCII ) {cle:, 0}) =
At the same time, we notice
(cfe; = cicl) ®r 01|+ ¢; ®F O}, + ¢} ®F O

According to the commuting property in Lemma 14, let

0,; = Z(cj)ﬂi(ci)hi ®r 0,4, 0,; = Z(Cj)ai (c))" ®F Oi,h’

a;=b; a;#b;
we have
f
ds - i( l.l)—’_Zi( j( 1,1))_ i( 1,l)+z j(i( 1,1)) ( )
J#i J#
and
asl(0,;) 1 1
7<dt 24/ — —55{(02,,4) + 25{(4(02,1')) = _55{<02,i) + ZLJT'(‘S{(Oz,i))- (I16)
Ji J#i

Similar to the case of spin systems, from (I15) and (I16), we obtain
167 0 Pi(O(1))l|os + [18) © Q:(O(1)) |, < exp (—/2)([16] 0 Pi(0(0))|, + (18] © Q:(0(0))]|o)-
Thus, we have
HOl]] < exp (=1/2)[[|O(0)]]| < 4N exp (—1/2).

for any ||O(0)|| = 1. The remaining step is the same as the proof of Theorem 8 so we omit it. m

2. Proof of Theorem 11

The following part of the proof follows a similar strategy to that used in proving Theorem 2 in Appendix H. For
completeness, we still write down the initial steps in the following. It suffices to show the decay rate of the following
quantity that is similar to that in Proposition 9:

5/ > 0:(0()

[5e]

N .
llowi =3 ot pitown]|_+|
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Here P;, Q; are defined in (I11) and (I112). We assume the observable O(0) takes the form of (I7), we will bound each term
separately as follows.
@) 5 o P;(O(1)): We notice

0,55 P(0(1)) = 81 oP,(L](0(1))) + 5/ o P, (sz,é(ou»)

JFi
= 8/ o Pi(LI((0(1))) +8] o P(L],(O(1)) —£Zo<0<t>>>

+Y Ll (81 oPy(0 )+[5fop > }

J# J#
= 8]0+ 35,06/« PL(0() +6] o (£1,(0(0) - Lly(0(0) + [5f 0P 321 ] 0
" J#
decaying part
contractive part

where we use the calculation in the above section to derive the last equality.
(ii) 5f 0 Q;(0(t)): We notice

0,60 0,(0(1)) =8 > Qu(LL(0(1))) +8 > 0, (Zﬁ;xom))
J#i

=5[00,(LLy(0(1) +6/ 0 0i(L],(0(r)) = LI, (O(1)))
+ 3L 010 0,00) + o oQ,»,Zc;,s}m(t))

J# J#

=3[0 0,(0(0)) + 31,610 0,(0(1) +6/ 2 O,(LL,(0(1) ~ £1,(0(1)

J#
decaying part '
contractive part
+[ofe0.3 221 00)
JF#L

Similar to (H14) and (H15), according to the above calculation, we obtain

167 o Pi(0(1))lloy < exp(=0)]5] o Pi(0(0))]

+ [[exnts =0 |of o P£L(00) = £lyf00) + |5 P T, 85| 06| a5 @)
16/ 0 Q00 < expl(—t/2)]6] = 0,0
+ [lesals =002 o 0 0L 00) = £lyf00) + |3 00 T, 85| 06| as. qus)
These inequalities imply
/(PO + 1500
< exp(—1/2) 3/ (P,(0(0))) | + 1/(2:(0(0))) )
+ [exal(s = /2o 0Pl (06) - £l + [of P, 01, 0001 as
+ [ exatls =072 ol 021,060 - £lg(06) + |7 00 X k| 06| as m)
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which is the same as (H16). Following the idea of proving Proposition 9, the next step is to show the inequalities

rsaalol: (o s.alo]

< ZK (165 0 Pe(O) oo + 16 © Qc(0)l|o)  (120)

and
187 0 Pi(L](0) = Lg(ONlr 118 0 Qi(£L](0) = LIg(ON)l, <D ri([6L0 Pe(O)]l + 1800 0 (0)le) (121

with >, k¢ + >, 7¢ smaller than a constant that is independent of the system size. The value of «§ and y¢ can be directly
calculated by the following lemma.
Lemma 16. Define J = (max; ; |[M; ;|)r'l. Under conditions of Theorem 11, for any r > 1, we have

17 €77 < 600 = O] (51 + expl=Co (1 1450 2 ) ).
I1£8, = Ligll oo < nle) = O(IM||(e(J10g*(1/€)/ A +1)P1D)). (122)
Proof. According to [41] (Lemma 3) and recall ||;|| < 1, J represents the Lieb-Robinson velocity for a fermionic system.

The proof of this lemma follows the same argument as that of Lemma 10, and thus, we omit it. =
Finally, similar to the proof of Proposition 9, letting r* = @(max{J/A, D? log(||M|~!)}), we can show

K= ngf + Zy{f <42r +1)Pn(e) 20> > (2m+ 1224 (m),

m'>r* m>m'

where I'(r) = 3,5, &(r) = O(|[M]|27"), when r = Q(J/A). Because r* = ©(max{J/A, D* log(||M||~")}), the second
term is smaller than 1/8. Finally, we set

= O((2r" + 1)72P(Jlog*(1/e)/A + 1)7P17! | M]|71)
to ensure k¥ < 1/4 and conclude the proof.
3. Proof of properties of fermionic partial trace and local oscillation operator

Proof of ||T||e-e < 1. Here, we only consider even parity observables. Different from the definition of {0 ,} in

Eq. (I10), we rewrite it as
0= Cj‘Ci ®F Oll] + Cj ®F Ollo + C; ®F 06,1 -+ CiCjr ®F 0]
where

f ‘ t Ot
¢i¢; ®p 01 = c¢;c;0c;c,
i N
cic; ®r OL, _| = c;ic; Ocicy,

¢i ®r O}, = ciclOclc; cf ® O}y = clc;0cc].
Given any vector |y) = |0;)|¢o;) + |1;)|¢1.:), we have

(w|Oly) = (¢1.|(1i|cle; ®r O} 1)) + (#0.1(0i]cic] ®F 0., _110,) o)
+ (pril(Lile] ®F O} 010:)|o.i) + (#0.:1(0ilc; ®F Of 1[1;)|1 ).

This implies
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10| Zmax{ sup
1)1}, =1

= max {||c]c; ®p il

We consider the first term

(#1:1(Lilcle; ®F O 1)) = (@1, 1{L|O] 1)1 )

Now, we try to get rid of |1;) in the above equality. We
rewrite O} | = 0Oddl + 0evenl where O(ffjld" contains terms
satisfying >, ;a; +b; mod 2 =1 and O$'$™" contains
terms satisfying >, ;a; + b; mod 2 = 0. Then,

j>l

(@1l (L1071 [15) 1)
<¢11|00dd1|¢11> <¢1,i|0?fn’i|¢1.i>7

where we abuse the notation and let |¢1,i>662"_] and
0y, 0™ e " act on qubits 1,2,....i— 1,

i+1---,n. Next, we write
)= Y calanlar) - laiy)lai) - lay),

ae{0,1}V!

where a = (a;,a,,...,a;_1,a;,1,...,a,) €{0,1}¥=1. We

then define

|¢Odd'>_ Z calar)|az) -+laii)|ai) - lay).
Z/_wa mod 2=1

B = Y cala)lad) - laiagy) - lay).

Zj>i a; mod 2=0

We have ( eve“1|¢°dd‘> =0 and

~ (1071 1)+ (B11OF T 1)
< 0dd1|00dd1|¢even1> < even1|00dd1|¢0dd1>

< even, 1|Oeven i |¢even 1> < odd 1|Oeven J |¢0dd 1>
< odd i | OOdd 1| evien.]> + <

+ < even 1|0even 1| _ even 1>
_ (< odd 1| _ <¢even1 )(O(I)fjld’l

even 1|00dd Bl |¢0dd 1>

< odd 1|0even 1|¢0dd 1>
even 1)(|¢odd 1> |¢even 1>>

This implies

||CzTCi ®F Oli,l ||<>O = sup |<¢1.i|<1i|0'i.1 |1i>|¢1,i>|
Il‘l‘>‘¢li ||2:l
= o33 + o5l = 1104 .,

Similarly, we also have

(#1(Lilc]c; ®F Of 1)), sup

leic] ® oL il }-

(0.0 cic] ®F O, —1|0i>|¢0,i>}
110:)lbo. 1) 1, =1 ’

leief ®F O ylly = 105, il
10l 2 max {[| 07, .

;1,—1 || oo}'
Finally, we notice

1
5 (

Similar to the above calculation, we have

T,(0) = cc+cc)®F(01”+0 1)

01, +0.,
o) = | S
<max {[|0} ]| .- 10%, _ill .} < 10| -
This concludes the proof. =

Proof of Lemma 13. We first notice
0=6{(0)+T,(0)=8](0) +8(T1(0)) + T, T, (0).

Applying the above equality iteratively, we have

= iﬁ{(Tl—l 0...0
i=1

O-T,o...0

1/2¥Tr(0)

T, (0)).

Next, using the fact that [5f T]=0and ||Ti]|poe < 1, we

1° ] —
have
0-T,o...0..T,(0)| < Z‘ / (O)H.
1/2VTr(0) =
This concludes the proof. L

Proof of Lemma 14. Decompose O as (I7). It suffices to
prove [F,T;] = 0. There are three cases:
() a; #b;: This case is trivial because T;(0) =
T;(F(0)) = 0.

(i) aj =b;=0: This case is also trivial because

T,(0) = 0. and T;(F(0)) = F(O).
(iii) a; = b; = 1: We note c;c generates the same parity
as cjc When they commute with c or c; when i # j.

This implies T;7(0) = FT;(0). =
Proof of Lemma 15. We only need to consider the case
when a; = b; for j€J. In this case

T,(0) = 557 ®r Oqia..vp-

2IJ
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Because O takes the form of (I7), if we expand T,(0O) into
the form of (I7), we must have Z,W a; + b; as an even
number. Then, we have

1

crmo) = (3

) ®r Of12..npg = 0.

This concludes the proof. =
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