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Inspired by natural cooling processes, dissipation has become a promising approach for preparing low-
energy states of quantum systems. However, the potential of dissipative protocols remains unclear beyond
certain commuting Hamiltonians. This work provides significant analytical and numerical insights into the
power of dissipation for preparing the ground state of noncommutingHamiltonians. For quasi-free dissipative
dynamics, including certain 1D spin systems with boundary dissipation, our results reveal a new connection
between themixing time in trace distance and the spectral properties of a non-HermitianHamiltonian, leading
to an explicit and sharp bound on themixing time that scales polynomially with system size. Formore general
spin systems, we develop a tensor network-based algorithm for constructing the Lindblad jump operator and
for simulating the dynamics. Using this algorithm, we demonstrate numerically that dissipative ground state
preparation protocols can achieve rapidmixing for certain 1D local Hamiltonians under bulk dissipation, with
amixing time that scales logarithmicallywith the system size.We then prove the rapidmixing result for certain
weakly interacting spin and fermionic systems in arbitrary dimensions, extending recent results for high-
temperature quantum Gibbs samplers to the zero-temperature regime. Together, these results show that
dissipation can be a powerful tool for ground state preparation, with potential applications across condensed
matter physics, quantum materials science, and beyond.
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I. INTRODUCTION

Ground state preparation is one of the most important
challenges in quantummany-body physics, quantum chem-
istry, and materials science. Quantum algorithms, such as
quantum phase estimation (QPE), quantum singular value
transformation (QSVT), adiabatic state preparation (ASP)
and their variants [1–8], offer a pathway to tackle chal-
lenging ground state preparation problems beyond the
capabilities of classical computers. Dissipative dynamics,

such as Lindblad dynamics, provides a distinct approach to
state preparation. This approach evolves the system density
matrix under engineered dissipation and Hamiltonian
dynamics and encodes the target state as the stationary-
state solution of the Lindblad master equation.
Dissipative techniques, and state preparation methods

employing midcircuit measurements in general, have been
widely applied to prepare matrix product states, ground
states of stabilizer codes, spin systems, and other states
exhibiting long-range entanglement [9–19]. Compared to
traditional unitary quantum algorithms as well as adiabatic
algorithms, dissipative approaches offer certain inherent
robustness to noise, and may bypass the need for complex
initialization procedures, making them attractive for imple-
mentation on early fault-tolerant quantum devices [20–22].
However, many existing dissipative protocols are tailored
for highly structured and frustration-free Hamiltonians. For
instance, the ground state of the parent Hamiltonian of a
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stabilizer code can be efficiently prepared using either
quantum error correction protocols or dissipative dynamics
[17], but most physical Hamiltonians (i.e., Hamiltonians
that are actually relevant for scientific applications) lack
these favorable structures.
Encouragingly, recent years have seen significant

advances in developing new dissipative protocols for
Gibbs state preparation [23–32], as well as in understand-
ing their effectiveness by analyzing the mixing time
[33–41], which quantifies the time required to drive any
initial state to the steady state of the dissipative dynamics
(see definition in Sec. II). Several dissipative protocols
[9,42–49] have also been designed to prepare the ground
state of noncommuting Hamiltonians. Such protocols will
still encounter the quantum Merlin-Arthur hardness of
ground state preparation in the worst-case scenario, where
the challenge can manifest as exponentially long mixing
times. Nonetheless, these methods more closely resemble
cooling processes in nature, and offer the potential for
significantly shorter mixing times in certain physical
Hamiltonians.
The theoretical characterization of efficient ground state

preparation protocols is, however, much more challenging
than that for thermal states. A key distinction lies in the
invertibility of thermal states, which is essential for the
concept of quantum detailed balance conditions (DBC)
[24,26,50–52]. In contrast, the density matrix of a pure
ground state has rank one and is therefore noninvertible,
which makes most existing theoretical tools inapplicable in
this setting. Numerically, these protocols can also be
difficult to simulate for systems beyond the reach of exact
diagonalization methods, as constructing the corresponding
Lindblad jump operators is significantly more complex
than that in typical Lindblad dynamics.
In this work, we make significant progress in under-

standing the capabilities of dissipative ground state proto-
cols through both analytical and numerical investigations.
A concise overview of the numerical and theoretical results
is provided in Sec. III.
The rest of the paper is organized as follows. In Sec. II, we

review the Lindblad-based ground-state preparation algo-
rithm, introducing the notion of mixing time and discussing
considerations for estimating the resource requirements of
dissipative protocols. Before the full discussion, Sec. III
provides an overview of the main results. We develop a
tensor-network method for simulating general Lindblad
dynamics on classical computers in Sec. IV. In Sec. VA,
we present the performance of the ground-state preparation
protocol for a variety of systems governed by quasi-free
Lindblad dynamics. In Sec. V B, we report the numerical
performance of the tensor-network method for simulating
the ground state preparation process beyond quasi-free
systems. Section V C provides a concrete example compar-
ing dissipative protocols with adiabatic state preparation
methods for preparing ground states. On the theoretical side,
in Sec. VI A we estimate the convergence rate in trace

distance for quasi-free systems, confirming the numerical
results of Sec. VA.Our rigorous analysis of rapidmixing for
ground-state preparation is presented in Sec. VI B.
Background material, detailed proofs, and additional
numerical results are collected in the Appendixes.

II. LINDBLAD-BASED GROUND STATE
PREPARATION ALGORITHM

The main goal of this work is to examine the perfor-
mance of the Lindblad-based ground state preparation
algorithm introduced in Ref. [43]. This dissipative algo-
rithm, inspired by gradient descent dynamics in classical
systems, employs carefully designed jump operators to
iteratively reduce the system’s energy and can prepare
ground states for noncommuting Hamiltonians.

A. Algorithmic construction

The Lindblad master equation for ground state prepara-
tion proposed in [43] [Eq. (1)] takes the form

dρ
dt

¼ L½ρ� ¼ −i½H; ρ� þ
X
a

KaρK
†
a −

1

2
fK†

aKa; ρg: ð1Þ

We refer to Ka as a jump operator, −i½H; ρ� as the coherent
part of the dynamics, and

P
a KaρK

†
a − 1

2
fK†

aKa; ρg as the
dissipative part of the dynamics, respectively.
Starting from a set of coupling operators fAag, whose

selection will be discussed in detail later, the corresponding
jump operator Ka is engineered to “shovel” high energy
components in the density matrix towards lower energy
ones [Fig. 1(a)]. The success of the ground state preparation
algorithm relies on the assumption that, starting from a
simple initial state (e.g., the all-zero state or the maximally

FIG. 1. (a) Schematic representation of the ground state
preparation algorithm, in which high-energy components are
systematically dissipated into lower-energy states until conver-
gence to the ground state is achieved. (b) and (c) The associated
filter function in the frequency and time domains, respectively.
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mixed state), which contains contributions from many high
energy states such as jψ j1i for some j1 > 0, there exist
efficient transition pathways ψ j1 → ψ j2 → � � � → ψ0.
In the energy eigenbasis, the jump operator takes the

form

Ka ¼
X
i;j

f̂ ðλi − λjÞjψ iihψ ijAajψ jihψ jj: ð2Þ

Here fλi; jψ iig represent eigenpairs of the system
Hamiltonian H ordered such that λ0< λ0þΔ¼ λ1 ≤ � � �,
and f̂ðωÞ is a filter function in the frequency domain. The
filter function f̂ðωÞ is supported only on the negative axis
ð−ωmax; 0Þ for some ωmax to be specified later. As a result,
in the energy eigenbasis, only transitions from jψ ji to jψ ii
satisfying −ωmax ≤ λi − λj ≤ 0 are allowed. The parameter
ωmax therefore characterizes the maximal energy change
per application of the jump operator. Moreover, for any
choice of Aa, we have Kajψ0i ¼ 0, since there is no
eigenstate with energy lower than λ0. Hence, the ground
state σ ¼ jψ0ihψ0j is always a fixed point, or stationary
state of the dynamics.
Equation (2) expresses the jump operator Ka using the

eigendecomposition ofH. It can be equivalently represented
in the time domain as follows. By expressing f̂ðωÞ as a filter
function in the time domain via the Fourier transform

fðsÞ ≔ 1

2π

Z
R
f̂ðωÞe−iωsdω; ð3Þ

and using the spectral decomposition of H, we obtain

Ka ¼
Z

∞

−∞
fðsÞeiHsAae−iHsds: ð4Þ

Although the construction may appear relatively compli-
cated, we can represent the jump operator coherently on a
quantum computer using a block encoding [4]. The resulting
linear combination of Heisenberg evolutions of Aa involves
only queries to Hamiltonian simulation and does not require
diagonalizing the Hamiltonian H. This, in turn, requires
efficiently approximating the integral in (4) through an
appropriate numerical quadrature scheme.
Let kHk andΔ denote the spectral radius and the spectral

gap of the Hamiltonian H, respectively. To construct this
quadrature, fðsÞ should decay rapidly as jsj → ∞ so that
the integration range can be truncated. By the duality
between the real-space and frequency-space representa-
tions of a function, f̂ðωÞ should be as smooth as possible in
the frequency domain, while still allowing the jump
operator to efficiently induce a transition from jψ1i to
jψ0i. This implies that f̂ðλ0 − λ1Þ ¼ f̂ð−ΔÞ should have a
non-negligible value. Together with f̂ð0Þ ¼ 0, the function
f̂ must make a sharp transition within an energy window of

size Δ. This implies that in the time domain, fðsÞ is
approximately supported on an interval whose size is
proportional to Δ−1.
For efficient discretization of the integral, we note that

fðsÞ oscillates in the time domain with a wavelength on the
order of ω−1

max, which implies that ωmax should not be
chosen excessively large. Naturally, we choose ωmax ≤
2kHk, since no energy transition beyond this range can
occur. For simplicity of the analysis, in this work we always
choose ωmax ¼ 2kHk. In practice, it is often sufficient to
choose ωmax to be much smaller and independent of the
system size. The behavior of f̂ðωÞ and fðsÞ is illustrated in
Figs. 1(b) and 1(c), respectively. Based on the discussion
above, the construction of this filter function requires
only a lower-bound estimate for Δ, and optionally, an
upper-bound estimate for kHk.

B. Quasilocality of the jump operator

A fundamental question in dissipative state preparation is
as follows: Given a target quantum many-body state σ,
under what conditions must the jump operators be chosen
so that σ is a fixed point of the dynamics? For pure state
preparation σ ¼ jψihψ j, several necessary conditions on
the jump operators are known [12,53,54]. In particular, the
target state must be annihilated by each jump operator (up
to a constant shift) [54] (Proposition 1).

Kajψi ¼ 0; ∀a: ð5Þ

This requirement places strong restrictions on the class of
pure states (for example, ground states) that can be
prepared using strictly local dissipative protocols, where
each Ka acts nontrivially only on a fixed number of sites
[54] (Corollary 2). A key observation in Ref. [43] and in
this work is that if one allows the jump operators to be
quasilocal (i.e., nonlocal operators with exponentially
decaying tails, see Appendix A for the definition), then
dissipative protocols still satisfy Eq. (5), and can provably
prepare the ground states of a much broader family of
Hamiltonians, including noncommuting ones. We note that
in some experimental contexts, the term quasilocal has
been used to describe few-qubit operators that may still be
challenging to realize in practice [12]. In contrast, through-
out this work we adopt the convention common in
mathematics and computer science, where such operators
are regarded as local, and reserve the term quasilocal for
operators with exponentially decaying support.

C. Efficient quantum simulation of Lindblad dynamics

There are two main strategies for simulating the
Lindblad dynamics in (1). The standard approach is to
employ simulation algorithms that are applicable to general
forms of Lindblad dynamics. For example, high-order
algorithms [55–57] can achieve near-optimal simulation
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cost per unit time. Both the construction of Ka and the
simulation algorithms [55–57] can use multiple ancilla
qubits, complex control logic, and are suitable only on full
fault-tolerant quantum computers.
The second, and simpler, strategy for simulating the

Lindblad dynamics in (1) is to exploit the specific form of
the jump operator in Eq. (4). In particular, this approach
does not explicitly construct Ka but instead embeds it
directly into the simulation algorithm. This in turn can lead
to algorithms that overall use only a single ancilla qubit and
can be much more suitable for early fault-tolerant quantum
devices. We will not discuss such algorithms in detail and
refer the reader to [43] (Sec. III) for descriptions of such
algorithms. We note that while the simulation algorithm
proposed in Sec. III of [43] is designed for simulating a
single jump operator using a single ancilla, when multiple
jump operators are present, operator splitting can be
applied to handle each jump operator separately.

D. Mixing time

Dissipative protocols prepare the ground state as the
stationary state of the dynamics. The total simulation time
can be characterized by the mixing time, which denotes the
minimal time required for the system to drive any initial
state to one that is close to the ground state. This closeness
can be characterized by the trace distance. Let kAk1 ¼
Trð

ffiffiffiffiffiffiffiffiffi
A†A

p
Þ denote the trace norm. The trace distance between

density matrices ρ1, ρ2 is Dðρ1; ρ2Þ ¼ 1
2
kρ1 − ρ2k1. This

metric has a direct operational meaning, since for any
bounded observable O, jTr½Oðρ1−ρ2Þ�j≤ kOkkρ1−ρ2k1 ≤
2kOkDðρ1; ρ2Þ. Let σ be a stationary state of the dynamics
generated by L. The mixing time with respect to the trace
distance is defined as

τmixðηÞ ¼ min ftjDðetLðρ0Þ; σÞ ≤ η; ∀ρ0g: ð6Þ

This definition of mixing time is widely used in
theoretical analysis [33–41]. However, in practice, the
trace distance can be difficult to evaluate, and one usually
cares about the mixing time for a given initial state ρ0, so
one may use surrogate notions of mixing defined through
physically meaningful quantities with respect to an initial
state ρ0. For instance, the energy-based mixing time is

τEmixðη; ρ0Þ ¼ min ftjjTr½HetLðρ0Þ� − λ0j ≤ ηg: ð7Þ

For two density matrices ρ, σ, the fidelity Fðρ; σÞ ¼
Tr
h ffiffiffiffiffiffiffiffiffiffiffi

ρ
1
2σρ

1
2

q i
. When σ ¼ jψ0ihψ0j is a pure state (ρ can

be a pure or mixed state), the fidelity simplifies to
Fðρ; σÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½hψ0jρjψ0i�
p

. The fidelity-based mixing
time is

τFmixðη; ρ0Þ ¼ min ftj1 − F2ðetLðρ0Þ; σÞ ≤ ηg: ð8Þ

Even though τEmix and τ
F
mix measure convergence through

specific variables, when maximizing over all initial states
ρ0, they can provide both an upper bound and a lower
bound of the mixing time defined via trace distance. These
relations are derived in Eq. (B8) in Appendix B.
We will specify the notion used in the numerical results

below. The theoretical justification will be provided
directly for the mixing time in terms of the trace distance.

E. Resource estimate

The total cost for dissipative ground-state preparation
using Lindblad dynamics can be decomposed into three
components: the cost associated with constructing the
Lindbladian and in particular jump operators Ka, denoted
by CL; the cost of simulating Lindblad dynamics per unit
time denoted by CS, using a Lindblad simulation algorithm
as discussed earlier; and τmix, an upper bound on the total
simulation time. Given these factors, the end-to-end re-
source cost is

End-to-end cost ¼ CL × CS × τmix: ð9Þ

Using the standard approach for simulating the Lindblad
dynamics, the cost for constructing Ka to precision ϵ is
ÕðωmaxΔ−1 logð1=ϵÞÞ [43] (see Appendix A for the mean-
ing of the notation Õ). Let kLkbe ≔ kHk þ 1

2

P
a kKak2.

Using the algorithm in [57] for simulating the Lindblad
dynamics (1) up to time t with precision ϵ the cost is
O(tkLkbe log ½ðtkLkbeÞ=ϵ�). For a typical physical
Hamiltonian (spin, fermion, etc.) defined on N sites,
kLkbe ¼ polyðNÞ and the end-to-end cost is

ÕðτmixΔ−1polyðNÞpolylogð1=ϵÞÞ: ð10Þ

The simplified algorithm in [43] (Sec. III) combines the
step of generating Ka and simulating the dynamics. It can
be viewed as a first-order algorithm for simulating the
continuous-time Lindblad dynamics. The end-to-end cost is
[43] (Theorem 1)

Õðτ2mixΔ−1polyðNÞ=ϵÞ: ð11Þ

Theorem 2 in [43] further presents a discrete-time algo-
rithm that reduces the cost from quadratic to nearly linear in
τmix, which we do not discuss here.
Thus, for the end-to-end cost to scale polynomially

with the system size N, the most important and challeng-
ing task is to estimate the mixing time and establish
that τmix ¼ polyðNÞ, a property often referred to as fast
mixing. In some cases, an even stronger bound τmix ¼
polylogðNÞ can be proved, which is known as rapid
mixing.
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The remainder of this manuscript focuses on character-
izing the effectiveness of the Lindblad dynamics for
ground-state preparation quantified by mixing times.

III. SUMMARY OF RESULTS

A. Numerical results

We perform numerical simulations for both quasi-free
and general dissipative dynamics. For general dissipative
dynamics, we develop a new numerical simulation algo-
rithm based on tensor networks, which is described
in Sec. IV.

1. Quasi-free dynamics (Sec. V A)

We begin by exploring quasi-free dissipative dynamics
[58,59]. Lindblad dynamics is called quasi-free if the
Hamiltonian is quadratic in Majorana operators and jump
operators are linear in Majorana operators. A hallmark of
such systems is that physical observables, such as covari-
ance matrices, form a closed set of equations. This enables
efficient simulations of these observables for large systems.
Utilizing this framework, we demonstrate numerically that
the ground state of a translationally invariant 1D transverse
field Ising model (TFIM) chain can be efficiently prepared,
even when cooling is applied only at the boundaries of the
chain. We observe that, with boundary dissipation, the
mixing time as defined by physical observables scales
approximately cubically with the system size, which is
consistent with findings from prior numerical studies using
different dissipative protocols [47,60,61].
We also observe that boundary dissipation efficiently

prepares the ground state of a cluster state Hamiltonian with
a symmetry-protected topological (SPT) ground state
phase. Starting from a trivial topological phase, we find
that the protocol allows crossing the phase boundary, as
indicated by changes in string order parameters (SOP). In
all the examples we have studied of systems subjected to
boundary dissipation, we observed that the coherent term in
the Lindblad dynamics is essential for achieving conver-
gence, even though it vanishes when applied to the
ground state.

2. General Lindblad dynamics (Sec. IV, Sec. V B)

For general dissipative dynamics that are not quasi-free,
we propose a new numerical algorithm based on the tensor
network methods to efficiently represent jump operators
and the Lindbladian [62,63]. Using this algorithm, we
study the mixing time required to prepare the ground state
of 1D anisotropic Heisenberg models in a magnetic field,
which includes the TFIM as a special case. Dissipation is
applied to each spin site (referred to as bulk dissipation),
and the resulting dynamics is not quasi-free even for the
integrable TFIM Hamiltonian. Our numerical results show
that the Hamiltonian with bulk dissipation exhibits rapid
mixing; this mixing time scaling also applies to spin

systems with weak random perturbations in their on-site
interactions, whose ground states cannot be efficiently
prepared by boundary dissipation alone due to the obstruc-
tion caused by Anderson-type localization. We further
verify the robustness of our approach using a nonintegrable
cluster-state Hamiltonian, which has a ground state in a
symmetry-protected topological (SPT) phase.

B. Theoretical results

To gain an analytical understanding of the convergence
behavior of our dissipative protocol, we provide theoretical
guarantees that rigorously establish upper bounds on the
mixing time for several physically relevant Hamiltonians.
As in our numerical studies, we begin with quasi-free
systems and present a general theorem upper bounding the
mixing time in this case. We then move beyond quasi-free
systems and demonstrate rapid mixing for weakly interact-
ing spin and fermionic systems.

1. Quasi-free dynamics (Sec. VI A)

First, we note that rigorously establishing the mixing
time in terms of trace distance poses significant challenges,
even for quasi-free systems. Previous analyses of mixing
time estimates, including those for quasi-free systems,
typically relied on the assumption that the stationary state
is invertible, making it difficult to extend these results to
ground state preparations [46,64]. We develop a new
method that can overcome this difficulty by examining
the spectral properties of a non-Hermitian Hamiltonian.
Specifically, in the absence of dissipation, the eigenvalues
of the Lindblad dynamics lie entirely on the imaginary axis.
With dissipation, we show that the mixing time measured
by the trace distance is determined by the gap between the
eigenvalues of this non-Hermitian Hamiltonian and the
imaginary axis.
This new approach enables explicit estimates of the

convergence rate in trace distance, with or without a
coherent term. In particular, it proves that the mixing time
of the 1D translationally invariant TFIM with boundary
dissipation scales as OðN3 logNÞ, which is consistent with
our numerical results. The cubic scaling of the mixing time
is mainly due to the long-wavelength modes, which perturb
the eigenvalues of the aforementioned non-Hermitian
Hamiltonian away from the imaginary axis by an amount
proportional to N−3.

2. General Lindblad dynamics for weakly interacting
systems (Sec. VI B, Sec. VI C)

Beyond quasi-free systems, we consider the preparation
of the ground state of a weakly interacting spin Hamiltonian
in an arbitrary finite dimension. Specifically, the
Hamiltonian is expressed as H¼H0þ εH1, where H0 is
a gapped Hamiltonian composed of noninteracting terms,
and the interaction strength ε is assumed to be smaller than a
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constant that is independent of the system size. We establish
the convergence of the density matrix by analyzing the
convergence of observables in the Heisenberg picture,
measured through a quantity known as the oscillator norm,
which measures the deviation of an observable from the
identity under Heisenberg evolution with the Lindbladian.
This strategy was recently utilized in the analysis of mixing
times of quantum Gibbs samplers in the high-temperature
regime (small inverse temperature β) [39].
Our first observation is that the definition of the

oscillator norm does not rely on an invertible stationary
state, and thus serves as a plausible candidate for character-
izing convergence to the ground state. However, we need to
modify the definition of the oscillator norm of an observ-
able O to track separately the deviation of O from the
identity operator along on-diagonal and off-diagonal direc-
tions. In the presence of perturbations, our proof employs a
Lieb-Robinson bound adapted to the ground state setting.
By integrating these elements, we establish a new stability
result for the convergence rate of the oscillator norm, which
provides the first rigorous proof of ground state preparation
protocols for noncommuting Hamiltonians.
Finally, we extend the result of weakly interacting spin

systems to weakly interacting fermionic systems. The
fermionic creation and annihilation operators are nonlocal
in the spin basis. Therefore, we need to employ a fermionic
version of the partial trace to define the oscillator norm. We
then prove that this modified definition of the oscillator
norm can effectively characterize the rapid convergence of
observables in the fermionic setting. We conclude that, for
bulk dissipation, both weakly interacting spin systems and
weakly interacting fermionic systems exhibit rapid mixing.

IV. CLASSICAL SIMULATION ALGORITHM OF
LINDBLAD DYNAMICS

For general Lindblad dynamics, we need to simulate the
dynamics in Eq. (1) directly to estimate the mixing time.
For system sizes beyond the reach of exact diagonalization
(ED), we propose an algorithm that constructs the jump
operators and propagates the Lindblad dynamics using a
matrix product operator (MPO) formulation. Recall that an
MPO on an N-site system (each site of local dimension d)
with bond dimension D can be written as

M ¼
Xd

s1;s01;…;sN;s0N¼1

ðMs1;s01
1 � � �MsN;s0N

N Þ·

× js1;…; sNihs01;…; s0N j; ð12Þ

where M
s1;s01
1 � � �MsN;s0N

N defines the corresponding

matrix product, with M
s1;s01
1 ∈ C1×D; M

sN;s0N
N ∈ CD×1, and

M
si;s0i
i ∈CD×D for 2 ≤ i ≤ N − 1. The cost of storing the

matrix products isOðd2D2NÞ, which scales linearlywith the
system size N.
To construct the jump operators Ka, we start by repre-

senting both the coupling operators Aa and the Hamiltonian
H as MPOs. We then compute the Heisenberg evolution
eiHsAae−iHs using the time-evolving block-decimation
(TEBD) algorithm [65,66]. Next, we approximate the
integral in Eq. (4) by a quadrature rule,

Ka ≈
X
i

pifðsiÞeiHsiAae−iHsi ; ð13Þ

and compress the resulting sum to maintain a manageable
bond dimension. This yields the MPO representation of the
jump operator Ka (see Fig. 2 for an illustration).
In practice, since Aa is an operator rather than a state, the

TEBD algorithm is implemented by vectorizing Aa into an
matrix product state (MPS) (often referred to as the Choi
isomorphism) [67]. Concretely, we reshape each site’s row
and column indices into a single combined index of
dimension d2, as illustrated in Fig. 3:

FIG. 2. Tensor network representation of the jump
operator Ka in the MPO form associated from a local coupling
operator Aa. First, the MPO representation of the operator
eiHsjAae−iHsj is constructed for a set of time steps fsjg. Next,
a weighted summation from discretizing the integralP

j pjfðsjÞeiHsjAae−iHsj is performed to combine these oper-
ators. Finally, the resulting MPO is compressed to reduce the
bond dimension, yielding an efficient representation of Ka.

FIG. 3. Illustration of vectorizing a MPO into a MPS using the
Choi isomorphism and then converting it back. Each pair of local
site indices in the MPO is reshaped into a single combined index,
allowing standard MPS techniques, such as TEBD, to be applied.
The reverse process restores the original MPO from the MPS by
reshaping the combined indices back into pairs.
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jMi♯ ¼
Xd2−1
i1¼0

� � �
Xd2−1
iN¼0

ci1;…;iN ji1i♯ ⊗ � � � ⊗ jiNi♯: ð14Þ

In a tensor network diagram, this corresponds to “gluing”
the row and column indices together on each site.
Converting back from an MPS to a MPO is achieved by
splitting each combined index back into two separate
indices. Under vectorization, the Heisenberg evolution
can be written as

jeiHsAae−iHsi♯ ¼ e−iðI⊗HT−H⊗IÞsjAai♯; ð15Þ

so that the standard TEBD algorithm can be applied directly.
To compute the jump operator Ka, we proceed as follows:
(i) convert Aa from itsMPO form into aMPS using the Choi
isomorphism, (ii) apply TEBD to evolve the vectorized
operator over time, and (iii) perform a summation over the
discrete time steps, followed by bond dimension compres-
sion. The resultingMPS is then converted back into a MPO,
yielding Ka.
Once each jump operator is expressed as a MPO, and

given that ρðtÞ is also stored as a MPO, we need to evaluate
the right-hand side of Eq. (1), i.e., LðρðtÞÞ. This is
illustrated using tensor network diagrams in Fig. 4.
However, direct multiplication and addition of MPOs tend
to increase the bond dimension quickly. For example, in the
absence of a compression step, multiplying two MPOs with
bond dimension D results in a MPO with bond dimension
D2, while adding two MPOs yields a MPO with bond
dimension 2D. If we choose fAag to be the set of all Pauli
matrices, and assume every operator in the Lindbladian has
bond dimension D, the bond dimension of the MPO
representation for LðρÞ would become OðND3Þ.
Forming such a MPO and then compressing it would

have an onerous cost of OðD9Þ. Instead, we directly fit a
MPO of bond dimension D to the uncontracted sum of
triple MPO products as depicted in Fig. 4, adapting the
method of [68]. This only requires computing the overlap
of the ansatz with these terms (see Appendix E). The initial
guess is chosen as the “zip-up” compression [69] of the first
term. Both this and the subsequent fitting iterations have a
cost of OðD5Þ.

After obtaining the compressed MPO representation of
LðρÞ, we may employ any suitable numerical integrator to
propagate ρðtÞ forward in time. For large systems, each
evaluation of LðρÞ is expensive, so it is beneficial to
minimize the number of function evaluations. For bulk
dissipation, the cost of evaluating LðρÞ is large, but the
mixing time can be very short. Therefore we adopt a simple
forward-Euler method. For boundary dissipation, the mix-
ing time can be much longer, and there we employ a more
accurate 4th-order Runge-Kutta method instead. More
advanced solvers can be explored in future studies to
improve the accuracy or efficiency.

V. NUMERICAL RESULTS

A. Quasi-free dissipative dynamics

1. Mapping spin systems to quasi-free dynamics

The Hamiltonian of a 1D translationally invariant TFIM
with open boundary conditions is

H ¼ −g
XN
i¼1

Zi − J
XN−1

i¼1

XiXiþ1: ð16Þ

Using the Jordan-Wigner transformation, the Hamiltonian
can be written as a quadratic Majorana operator with 2N
modes (Appendix C)

H ¼ 2iJ
XN−1

j¼1

wjþNwjþ1 þ 2ig
XN
j¼1

wjwjþN: ð17Þ

We choose the coupling operators to be Pauli matrices X1

and Y1 on the boundary of the chain, which are linear
in the Majorana operators: X1 ¼

ffiffiffi
2

p
w1; Y1 ¼

ffiffiffi
2

p
w1þN . By

Thouless’s theorem, the Heisenberg evolution of a single
Majorana operator under a quadratic Hamiltonian is still
linear in Majorana operators. Therefore the jump operator
in Eq. (4) can be expressed as

Ka ¼
X2N
j¼1

ζjawj; Aa ∈ fX1; Y1g; ð18Þ

for some coefficients ζja ∈C.
Lindblad dynamics with a Hamiltonian term that is

quadratic in Majorana operators, and jump operators linear
in Majorana operators is called quasi-free. Using a vecto-
rization process known as “third quantization” [58,59],
each term in the vectorized Lindbladian becomes quadratic
in an enlarged set of Majorana operators. Physical observ-
ables of a quasi-free dynamics, such as the covariance
matrix

Γpq ¼ ihwpwqi −
i
2
δpq; ð19ÞFIG. 4. Illustration of the tensor network computation associ-

ated with a single jump operator Ka in LðρÞ.
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form a closed set of equations, which involves only a
matrix of size 2N × 2N in time (Appendix C). This in turn
can be used to evaluate other physical quantities such as the
energy. Specifically, for a Hamiltonian quadratic in
Majorana operators, H ¼ P

2N
p;q¼1 hpqwpwq, where h is a

Hermitian and purely imaginary (and thus traceless) coef-
ficient matrix, the energy is given by

E ¼
X
pq

hpqhwpwqi ¼ iTr½hTΓ�: ð20Þ

For quasi-free systems with Gaussian initial states, higher
order covariance matrices are determined by the covariance
matrix Γ according to Wick’s theorem [70].

2. TFIM with boundary dissipation

Similar to the derivation in Appendix C, if we choose the
Pauli operators XN , YN on the other end of the boundary,
the resulting Lindblad dynamics is also quasi-free. Hence
we choose fX1; Y1; XN; YNg to be the coupling operators,
and construct the corresponding jump operators according
to Eq. (4).
Using the covariance matrix ΓðtÞ, we can evaluate the

energy EðtÞ via Eq. (20). We note that the convergence
of the many-body density matrix cannot always be
inferred from the covariance matrix ΓðtÞ. As a surrogate,
in this section, we characterize the mixing time in terms
of how rapidly the energy per site converges to its
value in the ground state. Specifically, we define the
mixing time as in Eq. (7), except that we measure the
convergence in terms of the energy per site, and start
from a specific initial state, namely, the maximally mixed
state ρ0 ¼ I=2N .
Figure 5(a) demonstrates the energy decay of the

boundary-dissipated TFIM under Lindbladian dynamics.
Numerical simulations show that the energy rapidly con-
verges towards the ground state energy initially, and then
enters an asymptotic exponentially decaying regime
∝ e−ΔLt. The convergence rate ΔL is the gap of the
Lindbladian (also called the Liouvillian gap). We may
extractΔL using an exponential fit of the dynamics, and can
also directly computeΔL by means of the rapidity spectrum
for quasi-free systems [71]. In Fig. 5(b), we show how the
Liouvillian gap scales with the system size. The estimates
for ΔL from the slopes in Fig. 5(a) yield excellent agree-
ment with the spectrum calculations in Appendix G. Using
a log-log scaling for the axes, we find that ΔL ¼ ΘðN−3Þ,
which matches the scaling of the energy-based mixing time
τEmix ¼ ΘðN3Þ for fixed η.

3. Cluster state Hamiltonian with boundary dissipation

The 1D cluster state Hamiltonian on N sites takes the
form

H ¼ −J
XN−2

j¼1

XjZjþ1Xjþ2 − h1
XN
j¼1

Zj: ð21Þ

This system plays a role in measurement-based quantum
computing [72,73], and exhibits an interesting symmetry
protected topological (SPT) phase, with a fourfold degen-
erate ground state in the thermodynamic limit [74,75]. The
field strength h1=J drives a phase transition between a
simple paramagnetic phase and the SPT phase. Using the
Jordan-Wigner transformation, the Hamiltonian can be
expressed as a quadratic Majorana operator

(a)

(b)

FIG. 5. Numerical results of 1D TFIM (16) with J ¼ 1,
g ¼ 1.5, using fAag ¼ fX1; Y1; XN; YNg as coupling operators.
(a) Convergence of energy starting from the maximally mixed
state. The dashed lines are exponential fits of the asymptotic
behavior of energy decay, meaning ½EðtÞ − E0�=N ¼
Θ½expð−κNtÞ� for constants κN when t is sufficiently large.
(b) The scaling of the inverse of the Liouvillian gap Δ−1

L with
respect to the system size N. Red points are the energy
convergence rate κN calculated from fitting the data in (a).
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H ¼ 2iJ
XN−2

j¼1

wjþNwjþ2 þ 2ih1
XN
j¼1

wjwjþN; ð22Þ

which is similar to a Kitaev chain Hamiltonian with next-
nearest-neighbor (NNN) couplings. The string order
parameter (SOP) is a nonlocal order parameter which
can be used to distinguish between the SPT phase and
the paramagnetic phase. It is defined as

Sab ¼ smXaZaþ1Zaþ3…Zb−3Zb−1Xb

¼ ð2iÞm
Ym
i¼1

waþ2i

Ym−1

i¼0

waþNþ2i; ð23Þ

where a, b are arbitrary starting and ending points in the
bulk with b − a being an even number,m ¼ ðb − aÞ=2, and
sm ¼ ð−1Þmðm−1Þ=2 is a sign coming from the Jordan-
Wigner transformation. The SOP can be computed using
Wick’s theorem [70]

hSabi ¼ ð2iÞm
�Ym

i¼1

waþ2i

Ym−1

i¼0

waþNþ2i

�
¼ Pfð2ΓjfqgÞ; ð24Þ

where Γjfqg is the covariance matrix restricted to the indices
fqg ¼ faþ 2i; aþ N þ 2ði − 1Þji ¼ 1;…ðb − aÞ=2g and
Pf denotes the Pfaffian.
We choose the coupling operators to be two single

Pauli operators on two ends of the boundary
A1 ¼ Y1; A2 ¼ YN . The corresponding jump operators
are linear in Majorana operators, and the dissipative
dynamics is thus quasi-free. The presence of zero energy
edge modes in the SPT phase of the system leads to
nearly degenerate ground states with energy gaps closing
exponentially rapidly as the system size increases.
However, the closing of the energy gap is entirely due
to the presence of the edge modes which is irrelevant for
bulk properties such as the SOP. Therefore we may define
an effective gap, denoted by ΔL;eff, by excluding the
eigenvalues in the Liouvillian exponentially clustering
near 0, and choose the parameters in the filter function
f̂ðωÞ based on this effective gap. When choosing effec-
tive gap Δf ¼ 0.1 in f, the resulting dissipative dynamics
converges to a statistical mixture of the nearly degenerate
states with the same SOP value in the thermodynamic
limit (Fig. 6). The SOP is evaluated by setting a, b to be
the two ends of the chain. We find again that boundary
dissipation alone is sufficient to drive the system from a
paramagnetic phase towards SPT phase.
Next, we examine how the convergence rate of

Lindbladian dynamics scales with the system size. As in
the study of the SOP, we set the coupling operators to be
single Pauli Y operators at the two ends of the system

(A1 ¼ Y1 and A2 ¼ YN) and fix Δf ¼ 0.1 for all N. The
initial state ρ0 is chosen to be the all-spin-down state. In
Fig. 7, we plot the energy decay of the SPT system with
h1=J ¼ 0.4. For N ¼ 20, 30, 40, similar to the 1D TFIM
case, the energy rapidly approaches the ground state energy
at early times before entering an asymptotic regime
characterized by exponential decay. We note that for
N ¼ 10 an energy plateau appears. This is because the
Hamiltonian in Eq. (21) has a fourfold degenerate ground
state in the thermodynamic limit. For small system sizes,
there is still a small energy gap between these nearly
degenerate states, which is smaller than our chosen Δf.
Reducing Δf would further lower the plateau. In Fig. 7, we

(a)

(b)

FIG. 6. Evolution of the string order parameter (SOP) for the
cluster state Hamiltonian (21) with boundary dissipation. The
system size is N ¼ 20. (a) SOP comparison between the ground
state (blue dashed line) and the final state at T ¼ 1500 (red
points). The final state accurately captures the quantum phase
transition from the paramagnetic phase to the SPT phase.
(b) Evolution of the SOP for several system sizes with
h1=J ¼ 0.5, whose ground state is in the SPT phase. The initial
state is the all-spin-down state, which is in the paramagnetic
phase with SOP ¼ 0. The dissipative evolution consistently
drives the system from the paramagnetic phase into the
SPT phase.
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illustrate how the effective Liouvillian gap scales with
system size. For various values of h1=J, we consistently
observe that the inverse effective gap scales as Δ−1

L;eff ¼
ΘðN3Þ. Consequently, to achieve a fixed accuracy η, the
energy-based mixing time scales as τEmix ¼ OðN3Þ.

B. Numerical results of tensor network simulation

1. Rapid mixing of 1D gapped local Hamiltonians

As an application of our tensor network based algorithm,
we prepare the ground state of two examples of 1D gapped,
noncommuting local Hamiltonians using bulk dissipation,
i.e., the coupling operators are chosen to be the Pauli
operators fXi; Yi; Zig on all sites. The first one is the same
TFIM example in Eq. (16) with J ¼ 1, g ¼ 1.5. The second
example, which cannot be transformed into a free fermionic

system, is an anisotropic Heisenberg model in a magnetic
field, described by the Hamiltonian

H ¼ −J
XN−1

i¼1

XiXiþ1 − ξ
XN−1

i¼1

ðYiYiþ1 þ ZiZiþ1Þ − g
XN
i¼1

Zi:

ð25Þ
Here we choose the parameters g ¼ 1.5, J ¼ 1, and
ξ ¼ 0.1. We simulate their Lindblad dynamics for system
sizes up to N ¼ 30. The bond dimension D of the MPO
representation for both the jump operators and the density
matrix is set to 50. We validate this choice of the bond
dimension in Appendix E.
In this section, we measure the mixing time with respect

to the fidelity as in Eq. (8). Unless otherwise mentioned, we
choose η ¼ 1

2
and start from the maximally mixed state

ρ0 ¼ I=2N . The fidelity increase during the Lindbladian
dynamics of the TFIMmodel is shown in Fig. 8. The results
in Fig. 9 demonstrate that the mixing times in both cases
scale logarithmically with the system size; this scaling is
often referred to as “rapid mixing” [33,36].

2. TFIM with random transverse field

Now consider the 1D TFIM but with a random transverse
field

H ¼ −
XN
i¼1

giZi − J
XN−1

i¼1

XiXiþ1; ð26Þ

where the strength of the transverse field gi ∼N ð2; σ2Þ and
σ2 is the variance parameter. Because of the Anderson
localization, for any σ > 0, the eigenfunctions of H are
exponentially localized in space. This means that choosing
single Pauli operators on the boundary produces a large
number of inaccessible “dark modes” (i.e., hψ ijAajψ ji ≈ 0),
which means that boundary dissipation alone may lead to

(a)

(b)

FIG. 7. Numerical results for the cluster state Hamiltonian (21)
with boundary dissipation. (a) Convergence of energy starting
from the maximally mixed state. Here, we use boundary
dissipation and set Δf ¼ 0.1, h1=J ¼ 0.4. The dashed lines
are exponential fits of the asymptotic behavior of energy decay
before hitting the energy plateau caused by the exponentially
decaying edge modes. (b) The scaling of the inverse of the
effective Liouvillian gap Δ−1

L;eff with respect to the system size N
with different h1=J. Points are the fitting energy convergence rate
κN calculated from dynamics simulation.

FIG. 8. The mixing time, τFmix, as defined in (8). During the
Lindbladian dynamics, the fidelity increases steadily and even-
tually converges to one. However, the convergence speed
decreases as the system size increases.
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an exponentially long mixing time, or fail to converge to the
ground state altogether. Nonetheless, the bulk dissipation is
not subject to this failure mechanism due to Anderson
localization. We choose the set of coupling operators fAag
to be all Pauli operators fXi; Yi; ZigNi¼1. We simulate the
resulting Lindblad dynamics using the tensor network
methods for system sizes up to N ¼ 16. Figure 10 illus-
trates the scaling behavior of the mixing time as a function
of the system size N. Our results indicate a logarithmic
scaling of the mixing time, suggesting that ground state
preparation can be efficiently achieved using bulk
dissipation.

3. Nonintegrable cluster state Hamiltonian

We now consider the following generalization of the
cluster state Hamiltonian

H ¼ −
XN−2

i¼1

XiZiþ1Xiþ2 − h1
XN
i¼1

Zi − h2
XN−1

i¼1

ZiZiþ1: ð27Þ

When h2 ≠ 0, the Hamiltonian cannot be transformed into
a free fermionic system. Nonetheless, the ground state can
still exhibit the SPT phase characterized by a nonzero SOP.
As an illustration, we choose the coupling operators to be

single Pauli operators on the boundary A1 ¼ Y1; A2 ¼ YN.
The parameters for h1 ¼ 0.4; h2 ¼ −0.4 are set so that the
ground state is in the SPT phase. We simulate the Lindblad
dynamics starting from the maximally mixed state, which
lies in the paramagnetic phase and exhibits a zero SOP
value. As shown in Fig. 11, the energy converges to the
ground state energy, and the SOP converges to approx-
imately 1 during the evolution, indicating that the state
transitions from paramagnetic phase to SPT phase. Our
result shows that the Lindblad-based algorithm crosses the
phase transition boundary during ground state preparation.

C. Comparison with adiabatic state preparation
protocols

A natural question is whether dissipative state prepara-
tion protocols offer advantages over alternative approaches,
such as adiabatic state preparation. Since both adiabatic
state preparation [1] and dissipative state preparation [17]
are known to be BQP-complete, meaningful comparisons
arise only within specific problem settings, where one can
exploit structural properties of the target system and
evaluate the relative performance of each method under
those conditions.
In a typical protocol for adiabatic ground-state prepara-

tion, one considers a time-dependent Hamiltonian that
interpolates between an initial noninteracting Hamiltonian
whose ground is easily prepared and a final target
Hamiltonian whose ground state is desired. This method
can be effective if one can identify a gapped adiabatic path

FIG. 9. Scaling of the mixing time for TFIM (red) and the
Heisenberg model in a magnetic field (blue) under bulk dis-
sipation, shown as a function of system size. The results indicate
a logarithmic scaling, consistent with τFmix ¼ ΘðlogðNÞÞ.

FIG. 10. The scaling of the mixing time of random TFIM
under bulk dissipation, i.e., we use 3N separate jump operators
with the set of all Pauli operators on each site as coupling
operators fX; Y; ZgN . The Hamiltonian parameters are set to
J ¼ 1; σ2 ¼ 0.5. We observe a logarithmic scaling of the
mixing time.

FIG. 11. Energy and SOP during the evolution for the non-
integrable cluster state Hamiltonian (27) under boundary dis-
sipation with system size N ¼ 10. The plot shows the energy
converging to the ground state energy and the SOP transitioning
from the paramagnetic phase (SOP ¼ 0) to the SPT phase.
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that connects the target ground state to the trivial ground
state. However, it is likely to fail if the path crosses a first-
order phase transition where the gap vanishes and the
quantum state must vary sharply to remain close to the
instantaneous ground state along the path.
To compare the performance of dissipative ground-state

preparation and adiabatic ground-state preparation, we
consider as an example the 1D axial next-nearest-neighbor
Ising (ANNNI) model [76]:

HANNNI ¼
J1
4

X
i

ZiZiþ1 þ
J2
4

X
i

ZiZiþ2 −
Γ
2

X
i

Xi; ð28Þ

where J1 is the nearest-neighbor coupling, J2 is the
frustrating next-nearest-neighbor coupling, and Γ is the
strength of the transverse field.
In the ANNNI model, there are three competing

tendencies: (i) for J1 > 0, the nearest-neighbor Ising term
favors an antiferromagnetic Néel state such as j↑↓↑↓ � � �i;
(ii) for J2 > 0, the next-nearest-neighbor term favors a
period-4 modulated structure such as j↑↑↓↓ � � �i; and
(iii) the transverse field provides quantum fluctuations
and favors a state with spins polarized in the x direction.
For adiabatic state preparation, we may use a linear

interpolation between a simple initial Hamiltonian Hinit ¼
−ðh0=2Þ

P
i Zi and the ANNNI target s.t.

HðsðtÞÞ ¼ ð1 − sðtÞÞHinit þ sðtÞHANNNI; ð29Þ

with a monotonic schedule satisfying sð0Þ ¼ 0, and sðTÞ ¼
1 [for instance, sðtÞ ¼ t=T; t∈ ½0; T�]. The adiabatic evo-
lution from the initial ground state jψð0Þi is given by

i∂tjψðtÞi ¼ HðsðtÞÞjψðtÞi; 0 ≤ t ≤ T: ð30Þ

The initial state is polarized in the z direction. As s
increases, this z-polarized phase competes with the ordered
phase selected by ðJ1; J2Þ. When Γ ¼ 0, along the adiabatic
path from Hinit to HANNNI, a first-order transition is
encountered at a point s ¼ sc where the energy of the
z-polarized state becomes equal to that of the competing
ordered phase and the gap vanishes. For small Γ, the
location of the transition shifts, and the level crossing opens
into an avoided crossing with a small gap.
We simulated this protocol for J1 ¼ 2, J2 ¼ 0.6,

Γ ¼ 0.2, h0 ¼ 1.0, with periodic boundary conditions
and lattice size L ¼ 12. For each instantaneous
Hamiltonian HðsÞ along the adiabatic path, we define
the ground state manifold as the set of orthogonal eigen-
states within 10−4 energy of the lowest eigenvalue. As
shown in the inset of Fig. 12, the ground state manifold
dimension varies nonmonotonically along the path: starting
from a unique ground state, it reaches a maximum of 3
around s ¼ 0.4, decreases to 1 around s ¼ 0.5, and
stabilizes to 2 for s > 0.6. We also define the effective

gap as the energy difference between the lowest excited
state above the ground state manifold and the ground state
energy; notably, this gap nearly closes three times along the
adiabatic path.
To assess the quality of state preparation, we monitor the

overlap with the ground-state subspace of the target
Hamiltonian HANNNI, quantified by Tr½ρðtÞσ�, where σ ¼
jψ0ihψ0j þ jψ1ihψ1j denotes the (unnormalized) projector
onto the twofold degenerate ground state manifold. This
choice reflects the fact that the goal of the algorithm is to
prepare the correct subspace rather than a specific pure state
within it, which is a natural measure from an algorithmic
perspective for degenerate systems. In addition to fidelity,
we track the convergence of the order parameters

m1 ¼
1

4L

X
i

hZiZiþ1i; m2 ¼
1

4L

X
i

hZiZiþ2i ð31Þ

to their target values averaged over theHANNNI ground state
manifold. Since all ground states within the manifold yield
identical values of m1 and m2, these observables serve as
stable and physically meaningful indicators of successful
ground-state subspace preparation.
For a total evolution time T ¼ 1000, we plot in Fig. 12

the overlap between the time-evolved state ρðtÞ ¼
jψðtÞihψðtÞj and the ground state manifold of HANNNI.
This ground manifold overlap exhibits persistent oscilla-
tions and never achieves a high value, indicating that the
adiabatic protocol fails to prepare the ground state. The
initial state is z polarized, and as the system evolves, it does

FIG. 12. Adiabatic state preparation for the ANNNI model at
L ¼ 12. Top: Effective gap, and the ground manifold dimension
of the instantaneous Hamiltonian HðsÞ along the adiabatic path.
Bottom: Evolution of the overlap between ρðtÞ and the ground
manifold and the order parameters.

YONGTAO ZHAN et al. PHYS. REV. X 16, 011004 (2026)

011004-12



not reach the correct ordered phase. This poor performance
is due to the presence of multiple level crossings and small
gaps along the adiabatic path, which induce diabatic
transitions and prevent the system from remaining in the
ground state manifold.
In contrast, as shown in Fig. 13, dissipative state

preparation with coupling operators A ¼ fXi; ZigLi¼1 suc-
cessfully prepares a high-fidelity approximation to the
ground state manifold. We set the spectral gap parameter
Δ ¼ 0.2 when constructing the jump operators, and this
protocol does not distinguish between the two degenerate
ground states ofHANNNI. The initial state is chosen to be the
all-one state, the same as that used in adiabatic state
preparation. Under dissipative state preparation, the observ-
ables m1 and m2 converge rapidly and monotonically to
their target values, which are unaffected by the complex
energy landscape or gap closings encountered along the
adiabatic path.
The results presented here do not imply that adiabatic

state preparation cannot be adjusted to achieve ground state
preparation. For example, we could introduce a carefully
designed adiabatic path to avoid any gap closing. However,
this approach may require detailed knowledge of the
system, and it can be challenging to determine in advance
whether a specific adiabatic path will be sufficient. On the
other hand, the design of dissipative protocols can be more
agnostic to the specifics of the target Hamiltonian or ground
state. Ultimately, the comparison between these methods
will likely be system dependent, and more theoretical and
numerical investigations will be needed in the future.

VI. THEORETICAL RESULTS

A. Mixing time of quasi-free systems

In this section, we establish a theory that provides an
explicit bound on the convergence in trace distance to the
ground state for general quasi-free dynamics. When applied
to the TFIM model studied in Sec. VA, we find that the
convergence rate estimate matches with the numerical
observation.

We provide some high-level ideas of our strategy below.
To prove the convergence in trace distance, we use the
Fuchs–van de Graaf inequality (see Theorem 4). The
ground state of any Hamiltonian that is quadratic in
Majorana operators can be written as a quasi-vacuum state
σ ¼ jvacihvacj, with

bkjvaci ¼ 0; k ¼ 1;…; N; ð32Þ

for a properly defined set of fermionic annihilation oper-
ators fbkg (Appendix C). Let N̂ ¼ P

k b
†
kbk be the total

number operator. Note that all states other than jvaci have
at least one particle. This gives the inequality

1 − hvacjρjvaci ¼ Tr½ρðI − jvacihvacjÞ� ≤ Tr½ρN̂�: ð33Þ

If we could prove an inequality of the form L†ðN̂Þ ≼ −cN̂
for some constant c > 0, then it would immediately follow
that Tr½N̂ρðtÞ� ≤ Tr½N̂ρð0Þ�e−ct, completing the proof.
However, in many cases including boundary dissipation,
such an inequality does not hold for any c > 0. Our key
innovation is to find a positive definite observableO, which
is equivalent to the number operator in the sense that there
exist constants C1, C2 such that C1N̂ ≼ O ≼ C2N̂. Then,
for a proper choice of O, we prove the desired inequality
L†ðOÞ ≼ −2ΔO for some constant Δ > 0 and thus the
exponential convergence property:

Tr½OρðtÞ� ≤ Tr½Oρð0Þ�e−2Δt: ð34Þ

This relation in turn gives

Tr½N̂ρðtÞ� ≤ C2

C1

Tr½N̂ρð0Þ�e−2Δt: ð35Þ

The key point is that the ratio ðC2=C1Þ > 1 and contributes
only a logarithmic additive term to the mixing time. When
substituted into the Fuchs-–van de Graaf inequality, this
yields the desired exponential convergence in trace distance
with the explicit convergence rate Δ. It is worth noting that
Tr½Oρ� may be viewed as a Lyapunov function of the
Lindblad dynamics.
We find that the convergence rate Δ, as well as the

constants C1, C2, are determined by a non-Hermitian
quadratic Hamiltonian

Hnh ¼ iH −
1

2

X
a

K†
aKa ¼

X2N
p;q¼1

ðhnhÞpqwpwq; ð36Þ

where hnh is a non-Hermitian matrix in general. Assume
hnh is diagonalizable as hnh ¼ VDV−1, then Δ is given by
the non-Hermitian gap ð−maxi ReDiiÞ. For a quadratic
observable O in Majorana operators, we find that L†ðOÞ is

FIG. 13. Adiabatic state preparation for the ANNNI model at
L ¼ 12. Evolution of the overlap between ρðtÞ and the ground
manifold and the order parameters.
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entirely determined by the non-Hermitian coefficient
matrix hnh [see Eq. (F5)].
We now present our main theorem for quasi-free systems

in Theorem 1, with the proof provided in Appendix F.
Theorem 1. Let H be a gapped quadratic Majorana

Hamiltonian with 2N modes, fAag be a set of coupling
operators that are linear in Majorana operators, and Ka be
the corresponding jump operators defined via Eq. (4).
We consider the non-Hermitian Hamiltonian in
Eq. (36), assume the coefficient matrix hnh is diagonaliz-
able with hnh ¼ VDV−1, and define the non-Hermitian
gap Δ ¼ −maxi ReDii. We denote the condition number
of V by κðVÞ.
If Δ > 0; κðVÞ < ∞, then starting from any initial state

ρ0, the Lindblad dynamics (1) converges exponentially in
trace distance to the quasivacuum state σ ¼ jvacihvacjwith

DðρðtÞ; σÞ ≤ κðVÞ
ffiffiffiffi
N

p
e−Δt: ð37Þ

An immediate result from Theorem 1 is that the mixing
time defined in the trace distance in Eq. (B7) scales as

τmixðηÞ ≤ Δ−1 log

�
κðVÞ ffiffiffiffi

N
p

η

�
: ð38Þ

Therefore as long as κðVÞ ¼ polyðNÞ, the scaling of the
mixing time is determined by the scaling of the non-
Hermitian gap Δ with respect to N, up to a logarithmic
factor.

1. Application to TFIM with boundary dissipation

The OðN3Þ scaling for boundary-dissipated 1D transla-
tionally invariant TFIM has been observed in previous
studies [77], where the jump operator is strictly applied to a
single site on the boundary. Their proof maps the problem
to a non-Hermitian Su-Schrieffer-Heeger (SSH) model,
which enables an analytic computation of the rapidity
spectrum. In contrast, our jump operatorsKa are quasilocal,
rendering this technique inapplicable. Instead, we leverage
the stronger result in Theorem 1 to directly bound the
convergence in trace distance.
For simplicity we only consider the case when the

coupling operators are X1, Y1 on one end of the boundary.
First, following the proof of Theorem 1 in Appendix F, the
jump operators take the form

KX1
¼

Z
fðsÞeiHsX1e−iHsds ¼

X
k

φk1bk;

KY1
¼

Z
fðsÞeiHsY1e−iHsds ¼

X
k

ψk1bk; ð39Þ

for some coefficient vectors fφk1g; fψk1g, where the
ground state is a quasivacuum state satisfying bkjvaci¼ 0.
Let Λ be a diagonal matrix encoding the eigenvalues of the

TFIM HamiltonianH, then the non-Hermitian Hamiltonian
in Eq. (36) can be written as

Hnh ¼ b†hfnhb; hfnh ¼ iΛ −
1

2
φφ† −

1

2
ψψ†: ð40Þ

The crucial role of the coherent term in convergence is now
evident. Without the coherent iΛ, hfnh is merely a rank-2
matrix, resulting in a large kernel for Hnh and the non-
Hermitian gap Δ ¼ 0. When the coherent term is present,
the jump operators can shift the imaginary eigenvalues iΛ
away from the real axis, opening a positive spectral gap.
Using first-order perturbation theory, we estimate the

spectral gap as Δ ¼ ΘðN−3Þ. The cubic scaling is mainly
due to long-wavelength modes, whose magnitude scales as
OðN−1.5Þ near the boundary. The square of this magnitude
determines the spectral gap from the real axis, perturbing
the eigenvalues from the imaginary axis by an amount
proportional to N−3.
Furthermore, κðVÞ ¼ Oð1Þ, which gives the mixing time

scaling as OðN3 logNÞ. We provide the details in
Appendix G. We expect the analysis for the cluster state
Hamiltonian may be derived with a similar argument and is
omitted here.

B. Rapid ground state preparation of weakly
interacting spin systems

Our numerical results in Sec. V B strongly suggest that
dissipative dynamics can achieve rapid mixing, or
OðlogNÞ mixing time, for certain non-commuting
Hamiltonians under bulk dissipation. However, as dis-
cussed in Sec. I, despite significant progress in theoretical
understanding of the effectiveness of finite-temperature
quantum Gibbs samplers [33,34,36–41], many of these
techniques cannot be used to characterize the convergence
towards the ground state because it is not a full-rank state.
In this section, we develop a technique that provides the
first rapid mixing result for a class of general noncommut-
ing Hamiltonians.
We focus on the Lindbladian dynamics without coherent

terms, i.e.,

dρ
dt

¼ L½ρ� ¼
X
a

KaρK
†
a −

1

2
fK†

aKa; ρg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔La;ε

: ð41Þ

Although the coherent term is removed, the fixed point of
the above Lindblad dynamics is still the ground state
of the HamiltonianH, since the jump operator still depends
on the Hamiltonian. For concreteness, consider a local
Hamiltonian H over a D-dimensional lattice of spin
systems Λ ¼ ½0; L�D with the following form [the system
size is N ¼ ðLþ 1ÞD]:
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H ¼ H0 þH1 ¼ −
X
i

Zi þ ε
X
j

hj; khjk ≤ 1: ð42Þ

Here, H0 ¼ −
P

i Zi is referred to as the noninteracting
term because its indices do not overlap. The choice
of Zi as the noninteracting term is made for convenience,
and can be substituted with other simple, gapped local
terms that also have non-overlapping indices. We assume
the interacting term H1 is an ðr0; lÞ-geometrically local
Hamiltonian (see Appendix A). A specific example of the
Hamiltonian in Eq. (42) is theD-dimensional TFIM model,
which is a ð2; 2Dþ 1Þ-local Hamiltonian. The parameter ε
is called the interaction strength.
For the Hamiltonian (42), it is sufficient to choose

fAag ¼ fXigi∈Λ to be the set of all single Pauli X matrices
as coupling operators. This is because if the interaction
strength ε ¼ 0, then the dissipative dynamics for the non-
interacting problem is ergodic and the mixing time scales as
OðlogNÞ. Our main result is that there exists a critical
interaction strength ε� independent of L (and thus N), so
that for all ε < ε�, the scaling of the mixing time
remains OðlogNÞ.
Theorem 2. (Informal) Consider a gapped Hamiltonian

H in the form of (42) defined on a D-dimensional lattice
Λ ¼ ½0; L�D, and N ¼ ðLþ 1ÞD is the system size. Let
fAag ¼ fXigi∈Λ be a set of coupling operators and fKag
be the corresponding jump operators defined via Eq. (4).
Consider the Lindblad operator without the coherent term
(41). Then there exists a constant ε� independent of the
system size such that when ε < ε�, we have

τmixðηÞ ¼ ΘðlogðN=ηÞÞ; ð43Þ

where τmixðηÞ is defined in (6).
The rigorous statement of Theorem 2 and its proof are

given in Appendix H. Our proof is inspired by recent
analyses of mixing times for quantum Gibbs samplers [39].
The analysis in [39] avoids relying on the invertibility of the
fixed point and characterizes convergence through the
decay of the so-called “local oscillator norm,” a quantity
that can be defined for any Lindblad dynamics with a
unique fixed point. In our setting, we employ a modified
local oscillator norm of observables [see Eq. (H5) in
Appendix H]. For the noninteracting Hamiltonian H0,
the exponential decay rate of the oscillator norm can be
computed explicitly. Furthermore, both its evolution and its
decay rate remain stable under local perturbations of the
Hamiltonian, which can be rigorously established using the
Lieb-Robinson bound.

C. Rapid ground state preparation of weakly
interacting fermionic systems

In Theorem 2, the noninteracting Hamiltonian is defined
as a sum of single-site Pauli Z operators. In this section, we
extend this result to the fermionic setting. Since free

fermionic systems can be exactly diagonalized, we intro-
duce a more general noninteracting term that permits
coupling between fermionic sites.
We consider a local fermionic HamiltonianH defined on

a D-dimensional lattice of fermionic systems, Λ ¼ ½0; L�D,
given by

H¼H0þH1¼
X
ij

Mi;jc
†
i cjþ ε

X
j

hj; khjk≤ 1; ð44Þ

where ðMi;jÞ is a positive definite Hermitian matrix, and c†j
and cj are the creation and annihilation operators at site j.
The terms fhjg are local fermionic perturbations and are
parity preserving, meaning that each hj contains an even
number of creation and annihilation operators. We further
assume that H0 is ð1; lÞ-geometrically local and

P
j hj are

ðr0; lÞ-geometrically local. Specifically, each term in H0 is
a product of fermionic operators acting on a set of sites
whose Manhattan diameter is at most 1, and each hj is a
product of fermionic operators acting on a set of sites
whose Manhattan diameter is at most r0. In addition, each
site i appears in at most l nontrivial c†i cj and hj terms.
For Eq. (44), we choose fAag ¼ fc†i ; cigi∈Λ to be the set

of all single fermionic operators as coupling operators.
We show that the mixing time of the Lindblad dynamics for
the fermionic system (44) also scales logarithmically with
the system size for sufficiently small ε. This is summarized
in the following theorem:
Theorem 3. (Informal) Consider a gapped fermionic

Hamiltonian H in the form of (44) defined on a D-
dimensional lattice Λ ¼ ½0; L�D, and N ¼ ðLþ 1ÞD is
the system size. Let fAag ¼ fc†i ; cigi∈Λ be a set of
coupling operators and fKag be the corresponding jump
operators defined via Eq. (4). Consider the Lindblad
operator without the coherent term (41). Then there exists
a constant ε� independent of the system size such that when
ε < ε�, we have

τmixðηÞ ¼ ΘðlogðN=ηÞÞ; ð45Þ

where τmixðηÞ is defined in (B7).
Theorem 11, the rigorous version of Theorem 3, is

proven in Appendix I, where further technical details are
provided. Similar to Theorem 2, the proof of the above
theorem uses the oscillator norm of observables. On the
other hand, we note that the creation and annihilation
operators are nonlocal in the spin basis after applying the
Jordan-Wigner transformation. As a result, the oscillator
norm defined in (H5) is not suitable for fermionic systems.
A proper definition of the oscillator norm requires the
notion of the fermionic partial trace that is compatible with
the canonical anticommutation relation (CAR); see
Appendixes I (I4) and (I8) for details.
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Additionally, we note that although the perturbation
terms in both Theorems 2 and 3 are assumed to be local
for simplicity, the resulting perturbation in the jump
operator K is not strictly local. Instead, under a suitable
choice of fðtÞ (decaying rapidly in jtj), the perturbation in
K becomes quasilocal, which is sufficient to establish the
stability of the evolution of the local oscillator norm.
Consequently, our results extend naturally to quasilocal
perturbations, as these also induce quasilocal perturbations
to the jump operator K.

VII. DISCUSSION

This work significantly strengthens the evidence that
dissipative dynamics is a powerful method for preparing
ground states for a wide class of noncommuting
Hamiltonians. A variety of dissipative mechanisms exist,
such as imaginary-time evolution (ITE) [78–80]. However,
implementing ITE via the operator e−τH does not readily
yield a completely positive trace-preserving (CPTP) map.
Existing approaches often rely on variational Ansätze or
tomography-based procedures. By contrast, Lindblad
dynamics provides a nonvariational and inherently CPTP
process that can be efficiently implemented on fault-
tolerant quantum hardware.
We have shown in Theorem 1 that a carefully designed

Lindblad dynamics succeeds in preparing the ground states
of quadratic Majorana Hamiltonians, and have proven in
Theorem 2 its effectiveness for nonintegrable but weakly
interacting spin Hamiltonians. Our tensor-network simu-
lations suggest that these methods can remain effective
beyond the reach of our rigorous analysis. For fermionic
systems, our Theorem 3 generalizes the recent work of
[41,81], which establishes the spectral gap for Gibbs state
preparation in perturbed fermionic systems. Our result
extends this to the ground state (zero temperature). Our
result enhances the spectral gap bound (also called fast
mixing) at finite temperatures from Refs. [41,81] to the
stronger notion of rapid mixing, and proves rapid mixing at
zero temperature. We note that Theorem 3 imposes certain
restrictions on the choice of the noninteracting term.
Removing these restrictions and extending our result to
efficient low-temperature thermal state preparation remain
interesting directions for future work. Additionally, inves-
tigating spin systems with long-range interactions may
provide further insights into the mixing properties of
dissipative processes.
We also note that Lindblad dynamics with jump oper-

ators of the form (4) are closely related to cooling and
thermalization protocols based on weakly coupled system-
bath interactions [13,47,48,61], including several that
appeared after the initial submission of the present work
[82–87]. Theoretical justification of the end-to-end effi-
ciency of such protocols requires mixing time analysis (see
Sec. II). Our work provides the first rigorous mixing time
analysis for a number of physical, noncommuting

Hamiltonians, and we expect that these results will inform
the future development of dissipative ground-state prepa-
ration protocols.
Recent numerical results also show that dissipative state

preparation can be more robust to decoherence than
adiabatic state preparation [88]. A similar phenomenon
has been observed experimentally showing that the lifetime
of dissipatively prepared states can be much longer than the
coherence times of physical qubits [89,90]. A rigorous
understanding of the source of such robustness would be an
interesting direction for future research.
A key open question is whether quantum computers

simulating dissipative dynamics can tackle classically hard
ground-state problems. Viewing ground-state preparation
as a minimization problem, there exist instances where
finding even a local minimum is classically hard, yet
Lindblad dynamics can efficiently achieve this quantumly
[42]. In the case of [42], the local and global minima of the
energy coincide, resulting in a single-phase ground state.
Many challenging physical Hamiltonians involve resolving
multiple phases with nearly degenerate energy levels,
which typically lie outside the perturbative regime. A
prominent example is the phase diagram of the two-
dimensional Hubbard model. It would be instructive to
compare dissipative algorithms with a broad class of
classical approaches such as those based on variational
states or quantum Monte Carlo. While a detailed bench-
marking study is beyond our current scope, we emphasize
that dissipative dynamics can, in principle, explore low-
energy subspaces efficiently even in beyond one-dimen-
sional settings and in settings where classical projector
Monte Carlo methods suffer from the sign problem, as in
frustrated or fermionic systems. Further theoretical analysis
and classical simulations may be instrumental in quantify-
ing the scope of the quantum advantage in these more
complex scenarios. The codes that support this study are
available on GitHub via [91].
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APPENDIX A: NOTATION

For a matrix A∈CN×N , let A�; AT; A† be the complex
conjugation, transpose, and Hermitian transpose (or
adjoint) of A, respectively. Unless specified otherwise,
kAk≡ kAk∞ denotes the operator norm, and kAk1 ¼
Trð

ffiffiffiffiffiffiffiffiffi
A†A

p
Þ denotes the 1-norm or the trace norm.

The trace distance between two states ρ, σ is Dðρ; σÞ ≔
1
2
kρ − σk1. We write A≽ 0 (A≻0) for a positive semi-

definite (definite) matrix, A≽ B if A − B≽ 0, and A ≼ B
if B≽ A.
We adopt the following asymptotic notations beside the

usual big O one. We write f ¼ ΩðgÞ if g ¼ OðfÞ; f ¼
ΘðgÞ if f ¼ OðgÞ and g ¼ OðfÞ. The notations Õ, Ω̃, Θ̃ are
used to suppress subdominant polylogarithmic factors.
Specifically, f ¼ ÕðgÞ if f ¼ Oðg polylogðgÞÞ; f ¼ Ω̃ðgÞ
if f ¼ Ωðg polylogðgÞÞ; f ¼ Θ̃ðgÞ if f ¼ Θðg polylogðgÞÞ.
Note that these tilde notations do not remove or suppress
dominant polylogarithmic factors. For instance, if
f ¼ Oðlog g log log gÞ, then we write f ¼ Õðlog gÞ instead
of f ¼ Õð1Þ.
In this paper, we consider spin systems on a D-dimen-

sional lattice Λ ¼ ½0; L�D for some integer L > 0. The total
number of lattice sites is N ¼ ðLþ 1ÞD. We measure the
distance between i; j∈Λ using the Manhattan distance
(with or without the periodic boundary condition). For
j∈Λ, let BjðrÞ be the set of indices in Λ with a Manhattan
distance at most r to the site j. If an operatorO∈C2N×2N can
be decomposed as O ¼ P

j∈Λ Oj, where each Oj is
supported on BjðrÞ, then O is called an r-geometrically
local Hamiltonian. If each site i∈Λ also appears in at most l
non-trivialOj terms, thenO is called an ðr; lÞ-geometrically

local Hamiltonian. GivenC; μ > 0, ifO can be decomposed
as O ¼ P

r≥1Or, where each Or ¼
P

j∈Λ Or;j is
r-geometrically local and satisfies

max
j∈Λ

kOr;jk ≤ C expð−μrÞ; ðA1Þ

then O is called a ðC; μÞ-quasi-local operator.
The definition above can be directly generalized to

fermionic operators on a lattice Λ. We refer readers to,
e.g., [41] and Definition 7 in [93].

APPENDIX B: COMPARISON OF MIXING TIME
METRICS

The following inequality, originally due to Fuchs and
van de Graaf [93], plays a central role in our analysis of
converging to ground state.
Theorem 4. (Fuchs–van de Graaf [93] and Sec. IX 2 in

[94]) For two density matrices ρ, σ, let Fðρ; σÞ ¼
Tr½

ffiffiffiffiffiffiffiffiffiffiffi
ρ
1
2σρ

1
2

q
� be the fidelity and Dðρ; σÞ be the trace

distance. Then

1 − Fðρ; σÞ ≤ Dðρ; σÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ; σÞ2

q
: ðB1Þ

Note that the fidelity of quantum states is sometimes
defined as Fðρ; σÞ2. When σ ¼ jψ0ihψ0j is a pure state,
Theorem 4 can be used to establish a relation between the
trace distance, the energy error, and the infidelity.
Proposition 5. Let fðλi; jψ iiÞg be the eigenpairs of the

Hamiltonian H, ordered such that λ0 < λ1 ¼ λ0 þ Δ ≤
λ2 ≤ � � �, where Δ > 0 is the spectral gap and σ ¼
jψ0ihψ0j is the unique ground state. For any density matrix
ρ, we have

Tr½Hρ� − λ0
4kHk ≤

1

2
ð1 − Fðρ; σÞ2Þ ≤ Dðρ; σÞ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðρ; σÞ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½Hρ� − λ0

Δ

r
: ðB2Þ

Proof. Using the spectral decomposition of H we have

H−λ0I¼
X
i≥1

ðλi−λ0Þjψ iihψ ij≥Δ
X
i≥1

jψ iihψ ij ¼ΔðI−σÞ:

ðB3Þ

When σ ¼ jψ0ihψ0j is a pure state, the fidelity simplifies to
Fðρ; σÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½hψ0jρjψ0i�
p

. Taking expectation in ρ yields

Tr½ðH−λ0IÞρ�≥ΔTr½ðI−σÞρ� ¼Δð1−F2ðρ;σÞÞ: ðB4Þ

Applying the Fuchs–van de Graaf inequality yields the
upper bound for Dðρ; σÞ.
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Note that

1 − F2 ¼ ð1 − FÞð1þ FÞ ≤ 2ð1 − FÞ; ðB5Þ

and

Tr½ðH−λ0IÞρ�≤ 2kHkTr½ρðI−σÞ� ¼ 2kHkð1−Fðρ;σÞ2Þ:
ðB6Þ

Applying the Fuchs–van de Graaf inequality again yields
the lower bound for Dðρ; σÞ. ▪
We can also define the fidelity-based and energy-based

mixing times, as given in Eq. (7)(8), to be independent of
the initial state:

τEmixðηÞ ¼ max
ρ0

τEmixðη; ρ0Þ; τFmixðηÞ ¼ max
ρ0

τFmixðη; ρ0Þ:

ðB7Þ
From Proposition 5, we immediately obtain

τEmixð4kHkηÞ≤ τFmixð2ηÞ≤ τmixðηÞ≤ τFmixðη2Þ≤ τEmixðΔη2Þ:
ðB8Þ

Thus, when maximizing over all initial states ρ0, the mixing
times defined via fidelity or energy provide both upper and
lower bounds for the mixing time defined via trace
distance.

APPENDIX C: QUASI-FREE SYSTEMS

1. Jordan-Wigner transformation

We introduce the Jordan-Wigner transformation for
fermionic annihilation and creation operators following
the convention in [95],

cj ¼
�Yj−1

k¼1

Zk

�
X−
j ¼ X−

j

�Yj−1
k¼1

Zk

�
;

c†j ¼ Xþ
j

�Yj−1
k¼1

Zk

�
¼

�Yj−1
k¼1

Zk

�
Xþ
j ; ðC1Þ

with

X−
j ¼

1

2
ðXj− iYjÞ; Xþ

j ¼ 1

2
ðXjþ iYjÞ; Zj ¼ 2c†jcj− I:

ðC2Þ
After the Jordan-Wigner transformation,

XjXjþ1 ¼ XjZj

�Yj−1
k¼1

Zk

�
ðc†jþ1 þ cjþ1Þ

¼ −iYj

�Yj−1
k¼1

Zk

�
ðc†jþ1 þ cjþ1Þ

¼ ðcj − c†jÞðc†jþ1 þ cjþ1Þ: ðC3Þ

Then the 1D TFIM Hamiltonian in (16)

H ¼ −g
XN
i¼1

Zi − J
XN−1

i¼1

XiXiþ1

can be expressed as

H¼−J
XN−1

j¼1

ðcj−c†jÞðc†jþ1þcjþ1Þ−2g
XN
j¼1

c†jcjþgN:

ðC4Þ

We now perform a unitary rotation�
cj
c†j

�
¼ 1ffiffiffi

2
p

�
1 −i
1 i

��
wj

wjþN

�
; j ¼ 1;…; N: ðC5Þ

This defines a set of 2N Majorana operators, fwpg2Np¼1
,

which are Hermitian operators satisfying the anticommu-
tation relation

fwp;wqg≔wpwqþwqwp¼ δpq; p;q¼ 1;…;2N: ðC6Þ

This gives rise to the Majorana form of the Hamiltonian in
Eq. (17):

H ¼ 2iJ
XN−1

j¼1

wjþNwjþ1 þ 2ig
XN
j¼1

wjwjþN:

2. Quadratic Majorana systems

The general form of a quadratic Majorana Hamiltonian
with 2N modes is

H ¼ 2
X

1≤p<q≤2N
hpqwpwq ¼

X2N
p;q¼1

hpqwpwq; ðC7Þ

The coefficient matrix h is Hermitian and purely imaginary.
In other words, we may write h ¼ −iA, where A is a real
antisymmetric matrix. The eigenvalues of the coefficient
matrix h are thus real and symmetric with respect to 0.
Let fλkgNk¼1 be the non-negative eigenvalues of h. If
Δ ¼ mink λk > 0, then H is called a gapped Hamiltonian
and Δ is referred to as the spectral gap. Then after a unitary
transformation, we may write

H ¼ 2
XN
k¼1

λkb
†
kbk þ const: ðC8Þ

Here fbk; b†kg is a set of fermionic annihilation and creation
operators satisfying the canonical anticommutation relation
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(CAR), and is linear in the fermionic operators fcj; c†jg in
Eq. (C5). The ground state is the quasivacuum state
satisfying (see, e.g., [96], Chap. 3.3)

bkjvaci ¼ 0; k ¼ 1;…; N: ðC9Þ

3. Quasi-free dynamics

We consider a general noninteracting quadratic
Hamiltonian H ¼ P

2N
i;j¼1 hijwiwj. According to the

Thouless theorem [97],

eiHswae−iHs ¼
X
p

wpðe−2ihsÞap: ðC10Þ

As a result, the jump operator associated with a coupling
operator wa is a linear combination of Majorana operators

Ka ¼
Z
R
fðsÞeiHswae−iHsds

¼
X
p

Z
R
fðsÞðe−i2hsÞapwpds

¼
X
p

½f̂ð−2hÞ�apwp: ðC11Þ

Then if the set of coupling operators is fAa ¼ waga∈ I
where I is some index set, a closed-form equation for the
covariance matrix Γpq ≔ ði=2Þhwpwq − wqwpi can be
derived as [58] (Proposition 1):

∂tΓ¼XΓþΓXT þY; X¼−2ih−Breal; Y¼Bimag;

ðC12Þ
Here the coefficient matrix

Bpq ¼
X
a∈ I

½f̂ð−2hÞ�ap½f̂ð−2hÞ��aq: ðC13Þ

Here, B is the sum over all the coefficients of the jump
operators, with Breal, Bimag denoting the (entrywise) real
and imaginary parts of B, respectively. Since the filter
function f̂ðωÞ is supported only on the negative real axis,
the Lindbladian dynamics filters out all positive eigenm-
odes of h while simultaneously populating the negative
modes, which contributes to the ground state of the
quadratic Hamiltonian H.

APPENDIX D: ADDITIONAL RESULTS FOR
QUASI-FREE SYSTEMS

1. Quasilocality of jump operators

We plot the heat map of the coupling operator X1 in the
computational basis, and the corresponding jump operator

KX1
in the energy basis in Fig. 14. We find that although X1

is very sparse in the computational basis, KX1
has signifi-

cantly more nonzero elements in the energy basis enabling
transitions from high energy components to low energy
ones. The filter function forbids transitions from low to
high energy components. Therefore the jump operator is
always an upper triangular matrix in the energy eigenbasis.
Furthermore, the magnitude of the coefficients jζjj2 þ
jζjþN j2 decays exponentially as j increases (1 ≤ j < N),
which implies that Ka is quasilocal in Majorana operators
(see Fig. 15).

2. Importance of the coherent term

In the case of boundary dissipation with coupling
operators X1; XN; Y1; YN , the coherent term −i½H; ·� plays
a critical role for the system to converge to the ground
state, as illustrated in Fig. 16. Physically, since the jump
operator is localized near the boundary, dissipation
primarily occurs there. The coherent term induces an

FIG. 14. (a) Matrix elements of a local Pauli operator X1 in the
computational basis. (b) Jump operator KX1

associated with
coupling operator X1 in the energy basis of the TFIM Hamil-
tonian with N ¼ 8 sites. The lower triangular part vanishes due to
the filter function.

FIG. 15. Coefficients of the jump operator under Majorana
basis. jζjj is calculated from (18) with Aa ¼ X1. System size is
N ¼ 100.

RAPID QUANTUM GROUND STATE PREPARATION VIA … PHYS. REV. X 16, 011004 (2026)

011004-19



energy flux from the bulk to the boundary, which
effectively reduces the energy.
Mathematically, without the coherent term, the Lindblad

dynamics lacks a unique fixed point. The role of the
coherent term is to lift this large degeneracy, and place
eigenvalues on the imaginary axis. The dissipative term
then slightly perturbs these eigenvalues away from the
imaginary axis, creating a spectral gap that leads to
convergence. This will be rigorously justified in Sec. VI A.

3. Convergence starting from different initial states

We choose an all-ones initial state j1Ni as the initial state
for boundary-dissipated TFIM. Other parameter settings
are the same in Fig. 5. The results are presented in Fig. 17.
We also observe that ΔL ¼ ΘðN−3Þ, which matches the
scaling of the energy-based mixing time τEmix ¼ ΘðN3Þ for
fixed η.

APPENDIX E: ADDITIONAL NUMERICAL
RESULTS ON TENSOR NETWORK SIMULATION

A key part of simulating the Lindbladian evolution is the
compression of a sum ofM triple MPO products to a single
MPO of bond dimension D on N sites, as described in
Sec. IV. A direct method contracts the three tensors per site
for each term, then explicitly sums the M terms, yielding a
single MPO with bond dimension MD3 which can be
compressed using a sweep of QR decompositions and
singular value truncations. The cost of this direct method
scales as OðNM3D9Þ.
An alternative option would be to interleave compres-

sions and contractions, that is, immediately compress back
to bond dimension D after every pairwise MPO multipli-
cation or addition. Such an approach has a better scaling of
OðNMD6Þ. However, this approach can introduce a sig-
nificantly larger error, as the number of compressions
performed is OðNMÞ rather than OðNÞ in the pre-
vious case.
To resolve this problem, we employ the fitting method

[68], which iteratively constructs the optimal (in terms of
Frobenius norm) 1D approximation of a tensor network
using only the overlap between the ansatz and the target
network. Since the target is a linear sum of terms, each
overlap can be calculated separately. This leads to a scaling
of OðKMND5Þ with K the number of sweeps required to
converge the fitting procedure (typically < 20). The library
quimb [98] enables the fitting of a sum of such MPO
product terms to a single MPO. It also supports the use of
GPUs, which can greatly speed up the computations
dominated by linear algebra operations such as this fitting
routine. We report the results in Fig. 18.
To demonstrate the accuracy of the fitting method, we

calculate TrðHKaρt¼0.1K
†
aÞ from the bulk-dissipated 1D-

TFIM model with J ¼ 1 and g ¼ 1.5, and compress the

FIG. 16. Convergence of energy in TFIM using
fX1; XN; Y1; YNg as coupling operators, with and without the
coherent term −i½H; ·� in the Lindbladian.

(a) (b)

FIG. 17. Numerical results for the 1D TFIM (16) with the initial state j1Ni. (a) Convergence of the energy during Lindblad dynamics.
(b) Scaling of the inverse Liouvillian gap Δ−1

L as a function of the system size N. Red points indicate the fitted energy convergence rates
κN extracted from panel (a).
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triple MPO product KaρK
†
a using the direct method and the

fitting method. Here Ka is the jump operator with coupling
operator X at the fifth site and ρt¼0.1 is the density matrix at
t ¼ 0.1 obtained from the Lindblad dynamics using a bond
dimension of 50. Then, Ka and ρt¼0.1 are compressed into
MPOs with a reduced bond dimensionD ranging from 6 to
14. For each given D, the absolute difference between
TrðHKaρt¼0.1K

†
aÞ computed using the direct method and

the fitting method is very small (see Fig. 19). We note that
for D > 14, the direct method becomes too expensive to
use for comparison, while the fitting method remains
efficient.
Then, we numerically validate that the jump operator can

be compressed into a MPO with relatively low bond
dimension. To this end, we evaluate kKajψgik2 for the

1D-TFIM model with J ¼ 1 and g ¼ 1.5, using a fixed
bond dimension D ¼ 50, with the coupling operator X
positioned at the center of the chain. We then investigate
how kKajψgik2 scales with increasing system size N.
Ideally, this quantity should remain small since jψgi
belongs to the kernel of the jump operator. Fig. 20 shows
that kKajψgik2 remains approximately 10−3 as the system
size grows. This result confirms that a bond dimension of
D ¼ 50 can be sufficiently accurate for representing the
ground state and the jump operators.
Finally, in Fig. 21, we demonstrate the reliability of the

tensor network results by comparing simulations with
different bond dimensions. We consider the bulk dissipa-
tion of an N ¼ 10 one-dimensional TFIM model using
bond dimensions D ¼ 10, 50 and a time step size of
Δt ¼ 0.025. The relative error is computed using D ¼ 75

FIG. 18. Compression time of multiplying three N ¼ 20
random tensor networks with the direct method (DM) and fitting
method (FM). The direct method is not applicable for bond
dimension D > 14 due to memory constraints.

FIG. 20. kKajψgik2 as a function of system size N for the 1D-
TFIM model with a ¼ bL=2c. The bond dimension is set to
D ¼ 50.

FIG. 19. Absolute difference of TrðHKaρt¼0.1K
†
aÞ calculated

using the direct method and the fitting method as the bond
dimension D increases.

FIG. 21. Relative error of energy with different time step sizes
and bond dimensions for 1D TFIM model.
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and Δt ¼ 0.0125 as the reference (see Fig. 21). For small
simulation times, the dominant source of error is the time
discretization. A large time step size may also lead to
unstable behavior as the simulation time increases.
Furthermore, as the system evolves towards a fixed point,
the error is no longer primarily dictated by time discretiza-
tion, and the bond dimension plays a more significant role.

APPENDIX F: MIXING TIME OF QUASI-FREE
SYSTEMS AND PROOF OF THEOREM 1

In order to characterize the convergence rate of Lindblad
dynamics, one standard approach is to evaluate the
Liouvillian gap. When the dissipative dynamics satisfies
the quantum detailed balance condition (DBC), the
Lindbladian may be transformed into a Hamiltonian under
a similarity transformation, and the Liouvillian gap can be
bounded using techniques for bounding spectral gaps for
quantum many-body Hamiltonians [38,41]. This strategy,
however, cannot be applied to Lindblad dynamics with a
coherent term, which breaks the DBC.
A more general formulation for bounding the spectral

gap may be captured by the hypocoercivity theory, which
was originally formulated in the context of classical kinetic
theory [99] and has recently been applied in the context of
open quantum systems described by Lindblad equations
[100]. However, the formulation in [100] can only be used
to prove the existence of a spectral gap. For quasi-free
dynamics, the spectral gap can also be derived explicitly
from the rapidity spectrum [71] related to the equation of
motion for the covariance matrix.
Even with spectral gap estimates, the problem remains

how to bound convergence of the density matrix in trace
distance. This is because spectral gap estimates only imply

convergence in χ2 distance [40], and the conversion from
convergence in the χ2 distance to the trace distance involves
a factor that blows up exponentially as temperature
decreases, making it inapplicable for ground state prepa-
ration when the temperature is zero. A special technique
called hypercontractivity can be applied to quasi-free
quantum groups [64] but also requires the stationary state
to be invertible.
Theorem 1 provides an explicit bound on the conver-

gence in trace distance to the ground state for general quasi-
free dynamics, and its proof is given below.
After the canonical unitary transformation and the

particle hole transformation, we express the quadratic
Hamiltonian H in the canonical form of (C8). Let n̂k ¼
b†kbk be the number operator of the kth mode, and N̂ ¼P

k n̂k ¼ b†b be the total number operator. Note that all
creation operators b†k increase the energy, while all anni-
hilation operators bk decrease the energy. As a result, the
jump operator must be a linear combination of annihilation
operators alone:

Ka ¼
XN
p¼1

Φ�
pabp ðF1Þ

for some coefficient matrix Φ, so that Kajvaci ¼ 0.
Define O ¼ P

N
k;l¼1 Ξklb

†
kbl for some positive definite

matrix Ξ to be determined. Then

i½H;O� ¼ 2i
X
k

λk½nk;O� ¼ 2i
X
kl

ðλk − λlÞΞklb
†
kbl: ðF2Þ

We may also directly compute

X
a

K†
aOKa−

1

2
fK†

aKa;Og¼ 1

2

X
a

ðK†
a½O;Ka�− ½O;K†

a�KaÞ

¼−
1

2

X
a

�X
p

Φpab
†
p

X
kl

ΞklΦ�
kablþ

X
kl

ΞklΦlab
†
k

X
p

Φ�
pabp

�

¼−
1

2

X
kl

b†k

�X
ap

ΦkaΦ�
paΞplþΞkpΦpaΦ�

la

�
bl: ðF3Þ

Let h ¼ diagðf2λkgÞ, and define a non-Hermitian Hamil-
tonian (the superscript f means the non-Hermitian matrix is
defined with respect to fermionic creation and annihilation
operators instead of Majorana operators):

Hnh¼ iH−
1

2

X
a

K†
aKa¼b†hfnhb; hfnh¼ ih−

1

2
ΦΦ†; ðF4Þ

then

L†½O� ¼ b†
��

ih −
1

2
ΦΦ†

�
Ξþ Ξ

�
−ih −

1

2
ΦΦ†

�	
b

¼ b†ðhfnhΞþ ΞðhfnhÞ†Þb: ðF5Þ

Here the coefficient matrix hfnh is related to that in Eq. (36)
by a similarity transformation.
Under the assumption that hfnh can be diagonalized as

VDV−1 for some invertible matrix V and diagonal
matrix D, we now make a choice of the Hermitian
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matrix Ξ ¼ VV† ≻ 0. Let Δ ¼ −maxiReDii be the non-
Hermitian gap. Then

L†½O� ¼ b†VðDþD�ÞV†b ≼ −2Δb†VV†b ¼ −2ΔO:

ðF6Þ

This immediately yields the exponential convergence of
the observable O as

Tr½OρðtÞ� ≤ Tr½Oρð0Þ�e−2Δt: ðF7Þ

From the definition of Ξ we have

λminðVV†ÞN̂ ≼ O ≼ λmaxðVV†ÞN̂: ðF8Þ

Then the infidelity can be bounded as

1 − hvacjρjvaci ≤ Tr½N̂ρ� ≤ 1

λminðVV†ÞTr½Oρ�

≤
1

λminðVV†ÞTr½Oρð0Þ�e−2Δt

≤
λmaxðVV†Þ
λminðVV†Þ Tr½b

†bρð0Þ�e−2Δt

¼ κ2ðVÞTr½N̂ρð0Þ�e−2Δt: ðF9Þ

Finally, by the Fuchs–van de Graaf inequality,

Dðρ; jvacihvacjÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hvacjρjvaci

p
≤ κðVÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½N̂ρð0Þ�

q
e−Δt: ðF10Þ

Finally, we use Tr½N̂ρð0Þ� ≤ N for any initial state ρð0Þ and
finish the proof of Theorem 1.

APPENDIX G: MIXING TIME OF 1D TFIM WITH
BOUNDARY DISSIPATION

To simplify the analysis we adopt the “c-cyclic” approxi-
mation in [95,101], and consider the following periodized
version of the TFIM Hamiltonian expressed in fermionic
operators

Hper ¼ −J
XN−1

j¼1

ðcj − c†jÞðc†jþ1 þ cjþ1Þ

− JðcN − c†NÞðc†1 þ c1Þ − 2g
XN
j¼1

c†jcj þ gN: ðG1Þ

Compared to Eq. (C4), this Hamiltonian introduces a
periodic term. Define the ratio ξ ¼ J=g. When ξ ≠ 1, the
modified Hamiltonian is gapped, and can be exactly
diagonalized as

Hper;c ¼ 2g
X
k

Λkb
†
kbk − g

X
k

Λk: ðG2Þ

Here for convenience we assume g ¼ 1, N is even, and
we label the eigenvalues from −ðN=2Þ to ðN=2Þ − 1, with

Λk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þξ2þ2ξcos

�
2πk
N

�s
; k¼−

N
2
;…;

N
2
−1; ðG3Þ

which is even with respect to the index k. The annihilation
operators fbkg are given in the form of a Nambu spinor

bk ¼
X
j


�
φkj þ ψkj

2

�
cj þ

�
φkj − ψkj

2

�
c†j

�
; ðG4Þ

with coefficients

φkj ¼
8<
:

ð2=NÞ1=2 sin
�
2πjk
N



k ¼ 1;…; N

2
− 1

ð2=NÞ1=2 cos
�
2πjk
N



k ¼ − N

2
;…; 0

ðG5Þ

and

ψkj ¼−Λ−1
k

��
1þ ξcos

�
2πk
N

��
φkjþξsin

�
2πk
N

�
φ−k;j

	
:

ðG6Þ

Direct calculation shows

X1 ¼ c1 þ c†1 ¼
X
k

φk1ðbk þ b†kÞ;

Y1 ¼ iðc1 − c†1Þ ¼
X
k

ψk1iðbk − b†kÞ: ðG7Þ

For ground state preparation, the corresponding jump
operators simply filter out the energy-increasing b†k com-
ponents:

KX1
¼

Z
fðsÞeiHsX1e−iHsds ¼

X
k

φk1bk;

KY1
¼

Z
fðsÞeiHsY1e−iHsds ¼

X
k

ψk1bk: ðG8Þ

The non-Hermitian Hamiltonian in Theorem 1 can be
written as

Hnh ¼ b†hfnhb; hfnh ¼ iΛ −
1

2
φφ† −

1

2
ψψ†: ðG9Þ

Note that the magnitudes of jφkjj; jψkjj vanish at least as

OðN−1
2Þ for large system sizes. This allows us to use first

order perturbation theory to estimate the non-Hermitian
gap. For k ¼ 0, we have λ0 ¼ 1þ ξ,
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1

2
ðφ2

0;1 þ ψ2
0;1Þ ¼

2

N
; ðG10Þ

which is large compared to OðN−3Þ. Due to the modifi-
cation to periodic boundary conditions, every eigenvalue
Λk with k > 0 is doubly degenerate with Λk ¼ Λ−k. This
relation also approximately holds for the original TFIM
problem with open boundary conditions. So we apply the
perturbation theory to each two-dimensional space spanned
by the eigenvectors corresponding to the eigenvalue
Λk ¼ Λ−k. Then

Δ≈
1

2
min
k>0

λminðMkÞ;

Mk ¼
�

φ2
k;1þψ2

k;1 φk;1φ−k;1þψk;1ψ−k;1

φk;1φ−k;1þψk;1ψ−k;1 φ2
−k;1þψ2

−k;1

�
:

ðG11Þ

For each 0 < k < N=2, we have

detMk ¼ ðφk;1ψ−k;1 − φ−k;1ψk;1Þ2

¼ ξ2 sin2ð2πkN Þ
Λ2
k

ðφ2
k;1 þ φ2

−k;1Þ2

¼ 4ξ2 sin2ð2πkN Þ
N2Λ2

k

¼ ΩðN−4Þ: ðG12Þ

Therefore each Mk is invertible and the spectral gap is
positive. In particular, when k ¼ 1, detMk ¼ ΘðN−4Þ, and
the magnitude of the entries are

M1 ¼
�
ΘðN−3Þ ΘðN−2Þ
ΘðN−2Þ ΘðN−1Þ

�
: ðG13Þ

Therefore one of the eigenvalues must beΘðN−1Þ. To obtain
detMk ¼ ΘðN−4Þ, the other eigenvalue must be ΘðN−3Þ.

APPENDIX H: PROOF OF RAPID GROUND
STATE PREPARATION OF WEAKLY

INTERACTING SPIN SYSTEMS

In this section, we show the rapid ground state prepa-
ration for the perturbed Hamiltonian. First, we introduce
the assumptions of the filter function f, which is similar to
that in [43] (Assumption 12). Our analysis employs the
Gevrey function, a subclass of smooth functions charac-
terized by well-controlled decay of the Fourier coefficients.
This characteristic plays a crucial role in the quadrature
analysis.
Definition 6. (Gevrey function) LetΩ ⊆ Rd be a domain.

A complex-valued C∞ function h∶Ω → C is a Gevrey
function of order s ≥ 0, if there exist constants C1; C2 > 0
such that for every d-tuple of nonnegative integers
α ¼ ðα1; α2;…; αdÞ,

k∂αhkL∞ðΩÞ ≤ C1C
jαj
2 jαjjαjs; ðH1Þ

where jαj ¼ P
d
i¼1 jαij. For fixed constants C1; C2; s,

the set of Gevrey functions is denoted by Gs
C1;C2

ðΩÞ.
Furthermore, Gs ¼ ⋃C1;C2>0

Gs
C1;C2

.
We refer readers to [102,103] for background on the

Gevrey class. We also note that the use of Gevrey class
functions is mainly for simplifying the discretization error
analysis and not essential for the design of the Lindbladian.
Assumption 7. (Filter function in the frequency domain)

Assume f̂ in the Fourier domain takes the form

f̂ðωÞ ¼ ûðω=8Þv̂ð2ωÞ: ðH2Þ

Here, û is a positive function and belongs to Gevrey
class Gα

A1;u;A2;u
ðRÞ for some A1;u; A2;u > 0 and α > 1, mean-

ing that

sup
ω∈R

���� dn

dωn ðûðωÞÞj ≤ A1;uAn
2;un

nα

for any n∈N. Also, suppðûÞ ⊂ ½−1; 1�, ûðωÞ ¼ Ωð1Þ
when ω∈ ½−1=2; 1=2�, and ûð−1=4Þ ¼ 1. In addition,
we assume v̂ ∈ Gα

A1;v;A2;v
ðRÞ, k½d=ðdωÞ�v̂kL1¼ Oð1Þ,

suppðv̂Þ⊂ð−∞; 0�, and v̂ð−4Þ ¼ 1.
We define the perturbed Hamiltonian as

Hε ¼ −
X
i

Zi þ ε
X
j

hj: ðH3Þ

Compared to [43] (Assumption 12), the above
assumption sets Δ ¼ 1=2 and Sω ¼ 4, which is sufficient
to ensure (H13). First, setting Δ ¼ 1=2 is adequate for our
analysis since the spectral gap of H0 is one, implying that
the spectral gap of Hε remains greater than 1=2 when ε is
sufficiently small. Second, choosing Sω ¼ 4 is sufficient
because the coupling operator Ai ¼ Xi modifies the energy
of H0 by at most one, ensuring that the energy decay of Hε

can also be bounded by 4 when ε is sufficiently small.
Now, we are ready to present the rigorous version of

Theorem 2:
Theorem 8. (Rigorous version of Theorem 2) Assume H

is a ðr0; lÞ-local Hamiltonian that takes the form of (42),
choose the coupling operators fAag ¼ fXigi∈Λ, and the
filter function f satisfies Assumption 7. There exists a
constant ε� only depends on k, l, D such that when ε < ε�,
we have

kexpðLtÞρ− jψ0ihψ0jk1≤η; ∀t¼ΩðlogðN=ηÞÞ; ρ;

where N ¼ ðLþ 1ÞD is the system size. Here, ε� ¼
Õððr0lÞ−ΘðDÞÞ.
The proof of Theorem 8 is based on the analysis of the

convergence of observables in the Heisenberg picture,
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which is inspired by [39]. Specifically, the evolution of any
observable O in the Heisenberg picture follows the dynam-
ics OðtÞ ¼ eL

†tðOÞ. Since L†ðIÞ ¼ 0 for any Lindbladian,
if the Lindblad dynamics ρðtÞ ¼ expðLtÞρ has a unique
fixed point, then the identity operator I is also the unique
fixed point of the dynamics eL

†t. In other words,
limt→∞OðtÞ ¼ χOI for some constant χO. For a index
set A ⊆ Λ, define the local oscillation operator

δAðOÞ ≔ O −
1

2jAj IA ⊗ TrAðOÞ; ðH4Þ

where TrAðOÞ is the partial trace of O with respect to the
indices in A. Then δAðOÞ measures the local deviation
of O from the identity. Furthermore, we expect that
limt→∞ δAðOðtÞÞ ¼ 0 for any nonempty A and observable
O. For a given index i∈Λ, for simplicity we identify i with
its singleton set fig. Then Ref. [39] quantifies the con-
vergence of the Lindblad dynamics by means of the
convergence of the oscillator norm

P
i∈Λ kδiðOÞk.

For ground state preparation, we first modify the
definition of the oscillator norm as follows:

kjOkj ≔
X
i∈Λ

kδi ∘PiðOÞk þ kδi ∘QiðOÞk: ðH5Þ

Here,

PiðOÞ ¼ j0iih0ijh0ijOj0ii þ j1iih1ijh1ijOj1ii; ðH6Þ

and

QiðOÞ ¼ j0iih1ijh0ijOj1ii þ j1iih0ijh1ijOj0ii; ðH7Þ

which will be used to measure the progress of the
dynamics along the diagonal and off-diagonal directions,
respectively.
Then using the characterization of the trace distance via

observables, the trace distance between ρðtÞ and σ ¼
jψ0ihψ0j can be bounded as

kρðtÞ − σk1 ¼ sup
kOk≤1

TrðOðρðtÞ − σÞÞ

≤ sup
kOk≤1

kOðtÞ − TrðOðtÞÞ=2Nkkρð0Þ − σk1

≤ sup
kOk≤1

kjOðtÞkjkρð0Þ − σk1: ðH8Þ

Now, to prove Theorem 8, it suffices to prove the
following proposition. We will prove this proposition after
giving the proof of Theorem 8.
Proposition 9. Under the conditions of Theorem 8, for

any observable O such that kOk ≤ 1, we have

kjOðtÞkj ≤ kjOð0Þkj expð−t=4Þ: ðH9Þ

Proof of Theorem 8. Using the relation between the
1-norm and the trace with observables,

kρðtÞ−σk1¼ sup
kOk≤1

TrðOðρðtÞ−σÞÞ

≤ sup
kOk≤1

kOðtÞ−TrðOðtÞÞ=2Nkkρð0Þ−σk1:

ðH10Þ

We then notice

OðtÞ − TrðOðtÞÞ=2N ¼ δ1ðOðtÞÞ þ
XN
i¼2

δi ∘
�
If1;…;i−1g

2i−1
⊗ Trf1;…;i−1gðOðtÞÞ

�
:

Thus, we have

kOðtÞ − TrðOðtÞÞ=2Nk ≤ kδ1ðOðtÞÞk þ
XN
i¼2

����δi ∘
�
If1;…;i−1g

2i−1
⊗ Trf1;…;i−1gðOðtÞÞ

�����
¼ kδ1ðOðtÞÞk þ

XN
i¼2

����
�
If1;…;i−1g

2i−1
⊗ Trf1;…;i−1g

�
∘ δiðOðtÞÞ

����
≤
XN
i¼1

kδiðOðtÞÞk ≤
XN
i¼1

kδi ∘PiðOðtÞÞk þ kδi ∘QiðOðtÞÞk ¼ kjOðtÞkj:

This provides a proof of (H8). Next, according to Proposition 9 and kρ − jψ0ihψ0jk1 ≤ 2, we have

k expðLtÞρ − jψ0ihψ0jk1 ≤ 2kjOð0Þkj expð−t=4Þ ≤ 8N expð−t=4Þ;

where we use kjOð0Þkj ≤ 4N in the last inequality. This concludes the proof. ▪
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In the following part of the section, we focus on the proof
of Proposition 9. First, the jump operator is

Kj;ε ¼
Z

∞

−∞
fðtÞ expðiHεtÞAj expð−iHεtÞdt

¼
Z

∞

−∞
fðtÞ expðiHεtÞXj expð−iHεtÞdt; ðH11Þ

and the corresponding dissipative term in the Lindbladian is

Lj;εðρÞ ¼ Kj;ερK
†
j;ε −

1

2
fK†

j;εKj;ε; ρg: ðH12Þ

When ε ¼ 0,

Kj;0 ¼
Z

∞

−∞
fðtÞ expðiH0tÞXj expð−iH0tÞdt

¼ f̂ð−2Þj0jih1jj ¼ j0jih1jj: ðH13Þ

We start with the evolution of the observable PiðOðtÞÞ:

∂tPiðOðtÞÞ ¼ PiðL†
i;εðOðtÞÞÞ þ Pi

�X
j≠i

L†
j;εðOðtÞÞ

�

which implies

∂tδi ∘PiðOðtÞÞ¼ δi ∘PiðL†
i;εðOðtÞÞÞþδi ∘Pi

�X
j≠i

L†
j;εðOðtÞÞ

�

¼ δi ∘PiðL†
i;0ðOðtÞÞÞþδi ∘PiðL†

i;εðOðtÞÞ−L†
i;0ðOðtÞÞÞþ

X
j≠i

L†
j;εðδi ∘PiðOðtÞÞÞþ

�
δi ∘Pi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ

¼−δi ∘PiðOðtÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
decaying part

þ
X
j≠i

L†
j;εðδi ∘PiðOðtÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contractive part

þδi ∘PiðL†
i;εðOðtÞÞ−L†

i;0ðOðtÞÞÞþ
�
δi ∘Pi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ:

Here, the second term is contractive in the sense that k exp ðPj≠i L
†
j;εtÞk∞→∞ ≤ 1 for any t > 0, which ensures that the

perturbation error does not grow exponentially with time t. In the last equality, we use the fact that δi ∘PiðL†
i;0ðOðtÞÞÞ ¼

−δi ∘PiðOðtÞÞ by direct calculation. Following the similar calculations in [39] [Appendix A. Sec. I (A6–A8)], we obtain

kδi ∘PiðOðtÞÞk≤ expð−tÞkδi ∘PiðOÞkþ
Z

t

0

expðs− tÞ
����δi ∘PiðL†

i;εðOðsÞÞ−L†
i;0ðOðsÞÞÞþ

�
δi ∘Pi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds:

ðH14Þ

Similar to the above calculation, for QiðOðtÞÞ, we also have

∂tδi ∘QiðOðtÞÞ¼ δi ∘QiðL†
i;εðOðtÞÞÞþδi ∘Qi

�X
j≠i

L†
j;εðOðtÞÞ

�

¼ δi ∘QiðL†
i;0ðOðtÞÞÞþδi ∘QiðL†

i;εðOðtÞÞ−L†
i;0ðOðtÞÞÞþ

X
j≠i

L†
j;εðδi ∘QiðOðtÞÞÞþ

�
δi ∘Qi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ

¼−
1

2
δiðQiðOðtÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
decaying part

þ
X
j≠i

L†
j;εðδi ∘QiðOðtÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contractive part

þδi ∘QiðL†
i;εðOðtÞÞ−L†

i;0ðOðtÞÞÞþ
�
δi ∘Qi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ:

This implies

kδiðQiðOðtÞÞÞk ≤ expð−t=2ÞkδiðQiðOÞÞk

þ
Z

t

0

expððs − tÞ=2Þ
����δi ∘QiðL†

i;εðOðsÞÞ − L†
i;0ðOðsÞÞÞ þ

�
δi ∘Qi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds: ðH15Þ

Combining (H14) and (H15), we obtain
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kδiðPiðOðtÞÞÞkþkδiðQiðOðtÞÞÞk ≤ expð−t=2ÞðkδiðPiðOÞÞkþkδiðQiðOÞÞkÞ

þ
Z

t

0

expðs−tÞ
����δi∘PiðL†

i;εðOðsÞÞ−L†
i;0ðOðsÞÞÞþ

�
δi∘Pi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds

þ
Z

t

0

expððs−tÞ=2Þ
����δi∘QiðL†

i;εðOðsÞÞ−L†
i;0ðOðsÞÞÞþ

�
δi∘Qi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds:

ðH16Þ

To bound the last two terms in Eq. (H16). We introduce a lemma to bound the second and third terms in (H16). First,
given lattice i and radius r > 0, we defineHði;rÞ

ε as the Hamiltonian that consists of the Hamiltonian terms ofHε on a ball of

radius r centered at lattice i. Kr
i;ε, Lr

i;ε are defined according to (H11) and (H12) with Hði;rÞ
ε . Then we have the

following lemma:
Lemma 10. Under conditions of Theorem 8 and let J ¼ rD0 l, for any r ≥ 1, we have

kLr†
i;ε − Lr−1†

i;ε k∞→∞ ≤ ξðrÞ ¼ O
�
1

2r
þ expð−C2;fðr=ð4JeÞÞ1=α=2Þ

�
;

kL†
i;ε − L†

i;0k∞→∞ ≤ ηðεÞ ¼ OðεðJlogαð1=εÞ þ 1ÞDlÞ: ðH17Þ

With Lemma 10, we are ready to provide the proof of Proposition 9.
Proof of Proposition 9. The proof follows a similar strategy to that in [39] (Appendix A. Sec. I). We first claim that there

exists κci and γci such that

k½δi ∘Pi;L
†
j;ε�ðOÞk; k½δi ∘Qi;L

†
j;ε�ðOÞk ≤

X
k

κki;jðkδk ∘PkðOÞk þ kδk ∘QkðOÞkÞ ðH18Þ

and

kδi ∘PiðL†
i;εðOÞ − L†

i;0ðOÞÞk; kδi ∘QiðL†
i;εðOÞ − L†

i;0ðOÞÞk ≤
X
k

γki ðkδk ∘PkðOÞk þ kδk ∘QkðOÞkÞ ðH19Þ

with
P

i;j≠i κ
k
i;j þ

P
i γ

k
i is smaller than a constant that is independent of the system size.

Denote by dði; jÞ the Manhattan distance between sites i; j∈Λ and Γðr0Þ ¼
P

r≥r0 ξðrÞ ¼ Oð2−rÞ when r0 ≥ 4kl. We
first show (H18) and calculate κ. Following the calculations in [39] (Appendix B) and letting BiðrÞ ¼ fjjdði; jÞ ≤ rg, we
get

k½δi∘Pi;L
†
j;ε�ðOÞk∞¼k½δi∘Pi;ðL†

j;ε−Ldði;jÞ†
j;ε Þ�ðOÞk∞

≤kL†
j;ε−Ldði;jÞ†

j;ε k∞→∞kδi∘PiðOÞÞk∞þ2kðL†
j;ε−Ldði;jÞ†

j;ε ÞðOÞk∞
≤

X
r>dði;jÞ

ξðrÞkδi∘PiðOÞÞk∞þ2
X

r>dði;jÞ
kððLr

j;εÞ†−ðLr−1
j;ε Þ†ÞδBjðrÞðOÞk∞

≤Γðdði;jÞÞkδi∘PiðOÞÞk∞þ2
X

r>dði;jÞ
ζðrÞ

X
dðj;kÞ≤r

ðkδk∘PkðOÞÞk∞þkδk∘QkðOÞÞk∞Þ

¼Γðdði;jÞÞkδi∘PiðOÞÞk∞þ2
X
k

ðkδk∘PkðOÞÞk∞þkδk∘QkðOÞÞk∞ÞΓðmaxðdði;jÞ;dðj;kÞÞÞ: ðH20Þ

Let r0 > 0, to be determined later. For dði; jÞ ≥ r0, we have

κki;j ¼

Γðdði; jÞÞ; k ¼ i

2Γðmaxðdði; jÞ; dðj; kÞÞÞ; k ≠ i:
ðH21Þ

For dði; jÞ < r0, we can bound the commutator as follows:
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k½δi ∘Pi;L
†
j;ε�ðOÞk∞ ≤ k½δi ∘Pi; ðL†

j;ε − Lr0;†
j;ε Þ�ðOÞk∞ þ k½δi ∘Pi; ðLr0;†

j;ε − Lr0;†
j;0 Þ�ðOÞk∞

≤ ðηðεÞ þ Γðr0ÞÞkδi ∘PiðOÞÞk∞ þ 2
X
r>r0

ζðrÞ
X

dðk;jÞ≤r
ðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ

þ 2ηðεÞ
X

dðk;jÞ≤r0
ðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ

≤ ðηðεÞ þ Γðr0ÞÞkδi ∘PiðOÞÞk∞ þ 2
X
k

Γðmax ðr0; dðk; jÞÞÞðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ

þ 2ηðεÞ
X

dðk;jÞ≤r0
ðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ: ðH22Þ

Therefore, for dði; jÞ < r0 we have

κki;j ¼


3ηðεÞ þ 3Γðr0Þ; dðk; jÞ ≤ r0
2Γðdðk; jÞÞ; dðk; jÞ > r0

: ðH23Þ

Similarly, we can also show (H19) and calculate γ. We have

kδi ∘PiðL†
i;ε − L†

i;0ÞðOÞk∞ ≤ kδi ∘PiðL†
i;ε − Lr0;†

i;ε ÞðOÞk∞ þ kδi ∘PiðLr0;†
i;ε − L†

i;0ÞðOÞk∞
≤ ηðεÞ

X
dði;kÞ≤r0

kδk ∘PkðOÞÞk∞ þ 2
X
r≥r0

ζðrÞ
X

dði;kÞ≤r
ðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ

≤ ηðεÞ
X

dði;kÞ≤r0
kδk ∘PkðOÞÞk∞

þ 2
X
j

Γðmax ðr0; dði; kÞÞÞðkδk ∘PkðOÞÞk∞ þ kδk ∘QkðOÞÞk∞Þ: ðH24Þ

This implies

γki ¼


ηðεÞ þ 2Γðr0Þ; dði; kÞ ≤ r0
2Γðdði; kÞÞ; dði; kÞ > r0:

ðH25Þ

Similar to the calculations in [39] (Appendix A.2), we get

κ ¼
X
i;j≠i

κki;j þ
X
i

γki ≤ 4ð2r0 þ 1Þ2DηðεÞ þ 20
X
m0≥r0

X
m≥m0

ð2mþ 1Þ2Dþ1ΓðmÞ: ðH26Þ

Choosing r0 ¼ ΘðmaxfJ;D2gÞ sufficiently large so that the second term is smaller than 1=8, we then set ε small enough so
that

ε ¼ Oðð2r0 þ 1Þ−2DðJ logαð1=εÞ þ 1Þ−Dl−1Þ;

we have κ < 1=4.
Plugging (H18) and (H19) into (H16), we have

kδiðPiðOðtÞÞÞk þ kδiðQiðOðtÞÞÞk ≤ expð−t=2ÞðkδiðPiðOÞÞk þ kδiðQiðOÞÞkÞ

þ κ

Z
t

0

expððs − tÞ=2ÞðkδiðPiðOðsÞÞÞk þ kδiðQiðOðsÞÞÞkÞds ðH27Þ

Because κ < 1=4, we can bound kδiðPiðOðtÞÞÞk þ kδiðQiðOðtÞÞÞk:
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kjOðtÞkj ¼
X
i

ðkδiðPiðOðtÞÞÞk þ kδiðQiðOðtÞÞÞkÞ ≤ e−t=4
X
i

ðkδiðPiðOÞÞk þ kδiðQiðOÞÞkÞ ðH28Þ

This concludes the proof. ▪
Finally, we provide the proof of Lemma 10.
Proof of Lemma 10. According to Lemma 16 in [43] with Δ ¼ 1=2 and Sω ¼ 4 (see the detailed explanation about this

choice under Assumption 7), the filter function in the time domain satisfies jfðsÞj ¼ OðC1;f expð−C2;fjsj1=αÞ, where
C1;f; C2;f are constants that only depend on A1;u; A2;u; A1;v; A2;v in Assumption 7. This directly implies

kðjsj þ 1ÞfðsÞkL1 ≤ C; ðH29Þ
where C only depends on A1;u; A2;u; A1;v; A2;v, and α.
We first show the bound of kL†

i;ε − L†
i;0k∞→∞. Note

kL†
i;ε − L†

i;0k∞→∞ ≤ 2ðkKj;εk þ kKj;0k∞ÞkKj;ε − Kj;0k∞ ≤ 4kfðtÞkL1kKj;ε − Kj;0k: ðH30Þ

Let J ¼ rD0 l. Next,

kKj;ε − Kj;0k∞ ¼
����
Z

∞

−∞
fðtÞ½expðiHεtÞXj expð−iHεtÞ − expðiH0tÞXj expð−iH0tÞ�dt

����
∞

¼
����
Z

∞

−∞
fðtÞ½expðiHεtÞXj expð−iHεtÞ − expðiHðj;rÞ

ε tÞXj expð−iHðj;rÞ
ε tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k·k≤kXjk∞ minfð2JjtjÞrr! ;2g

dt

þ
Z

∞

−∞
fðtÞ½expðiHðj;rÞ

ε tÞXj expð−iHðj;rÞ
ε tÞ − expðiHðj;rÞ

0 tÞXj expð−iHðj;rÞ
0 tÞ�dt

þ
Z

∞

−∞
fðtÞ½expðiHðj;rÞ

0 tÞXj expð−iHðj;rÞ
0 tÞ − expðiH0tÞXj expð−iH0tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 ∀r>1

dt

����
∞

≤
Z

∞

−∞
fðtÞ

�
min


ð2JjtjÞr
r!

; 2

�
þ k expðiHðj;rÞ

ε tÞ − expðiHðj;rÞ
0 tÞk

�
dt

≤
Z

∞

−∞
fðtÞ

�
min


ð2JjtjÞr
r!

; 2

�
þ kHðj;rÞ

ε −Hðj;rÞ
0 kjtj

�
dt

≤
Z

∞

−∞
fðtÞ

�
min


ð2JjtjÞr
r!

; 2

�
þ εðrþ 1ÞDljtj

�
dt

¼ O
�Z

jtj≤ r
4Je

ð2JÞrjtjr
r!

jfðtÞjdtþ
Z
jtj> r

4Je

jfðtÞjdtþ εðrþ 1ÞDl
�

¼ O
�Z

jtj≤ r
4Je

ð2JÞrjtjr−1
r!

dtþ
Z
jtj> r

4Je

expð−C2;fjtj1=αÞdtþ εðrþ 1ÞDl
�

¼ O
�
1

2r
þ
Z
jtj> r

4Je

expð−C2;fjtj1=αÞdtþ εðrþ 1ÞDl
�
:

In the last third equality, we use (H29).
Next, to bound the second term, we let Cα;C2;f

be the constant that depends on α and C2;f such that αjuα−1j <
expðC2;fu=2Þ for any juj > Cα;C2;f

. When r > 4JeCα
α;C2;f

,

Z
jtj> r

4Je

expð−C2;fjtj1=αÞdt ¼ 2

Z
u>ð r

4JeÞ1=α
αuα−1 expð−C2;fjujÞdu ≤ 2

Z
u>ð r

4JeÞ1=α
expð−C2;fjuj=2Þdu

¼ 4

C2;f
exp

�
−C2;f

�
r

4Je

�
1=α

=2

�
;

where we let u ¼ t1=α in the first equality. In the inequality, we use αjujα−1 < expðC2;fu=2Þ for juj > Cα;C2;f
.
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In conclusion, we can set r ¼ Θðmax fJ logαð1=εÞ; JCα
α;C2;f

gÞ to obtain

kKj;ε − Kj;0k∞ ¼ O
�
1

2r
þ
Z
jtj> r

4Je

expð−C2;fjtj1=αÞdtþ εðrþ 1ÞDl
�

¼ O
�
1

2r
þ expð−C2;fðr=ð4JeÞÞ1=α=2Þ þ εðrþ 1ÞDl

�
:

Plugging this into (H30), we obtain

ηðεÞ ¼ OðεðJ logαð1=εÞ þ 1ÞDlÞ: ðH31Þ

Next we calculate the function fðrÞ

kLr;†
i;ε − Lr−1;†

i;ε k∞→∞ ≤ 2ðkKr
j;εk∞ þ kKr−1

j;ε k∞ÞkKr
j;ε − Kr−1

j;ε k∞ ≤ 4kfkL1kKr
j;ε − Kr−1

j;ε k∞:

The term kKr
j;ε − Kr−1

j;ε k can be calculated using Lieb-Robinson bound:

kKr
j;ε − Kr−1

j;ε k∞ ¼
����
Z

∞

−∞
fðtÞ½expðiHðj;rÞ

ε tÞXj expð−iHðj;rÞ
ε tÞ − expðiHðj;r−1Þ

ε tÞXj expð−iHðj;r−1Þ
ε tÞ�dt

����
∞

≤
Z

∞

−∞
fðtÞk expðiHðj;rÞ

ε tÞXj expð−iHðj;rÞ
ε tÞ − expðiHðj;r−1Þ

ε tÞXj expð−iHðj;r−1Þ
ε tÞk∞dt

≤
Z

∞

−∞
fðtÞ min


ð2JjtjÞr
r!

; 2

�
dt

¼ O
�
1

2r
þ
Z
jtj> r

4Je

expð−C2;fjtj1=αÞdt
�
: ðH32Þ

As a result, we get

ξðrÞ ¼ O
�
1

2r
þ expð−C2;fðr=ð4JeÞÞ1=α=2Þ

�
:

This concludes the proof. ▪

APPENDIX I: PROOF OF RAPID GROUND
STATE PREPARATION OF WEAKLY
INTERACTING FERMIONIC SYSTEMS

We first present the rigorous version of Theorem 3 for
weakly interacting fermionic systems.
Theorem 11. (Rigorous version of Theorem 3). Consider

a gapped fermionic Hamiltonian H in the form of (44)
defined on a D-dimensional lattice Λ ¼ ½0; L�D, and N ¼
ðLþ 1ÞD is the system size. Let fAag ¼ fc†i ; cigi∈Λ be a
set of coupling operators and fKag be the corresponding
jump operators defined via Eq. (4). Assume the following
conditions hold:

(i) M ≻Δ for some Δ > 0.

(ii) The filter functions f is chosen properly to satisfy

f̂ðνÞ ¼ 1; ∀ ν∈ ½−kMk;−Δ�; and

f̂ðνÞ ¼ 0; ∀ ν > 0;

maxfjfðtÞjg ≤ C1kMk expð−C2jt=Δj1=αÞ; ðI1Þ

where C1; C2; α > 0 are constants independent of N.
Consider the Lindblad dynamics in Eq. (41). Then there
exists a constant ε� independent of L and N such that when
ε < ε�, we have

τmixðηÞ ¼ ΘðlogðN=ηÞÞ; ðI2Þ

where τmixðηÞ is defined in (B7).Here,ε�¼Õðððmaxi;jjMi;jjÞ
r0l=ΔÞ−ΘðDÞkMk−1Þ.
The existence of f follows from [103]. According to the

proof of [103] (Corollary 2.8), there exists a function g
belonging to Gα

A1;u;A2;u
ðRÞ for some A1;u; A2;u > 0 such that

gðxÞ ¼ 1 when x ≥ 1, 0 ≤ gðxÞ ≤ 1 when x∈ ½1=2; 1�, and
gðxÞ ¼ 0 when x ≤ 1=2. According to [43] (Lemmas 14
and 15), f̂ðνÞ ¼ gð−ν=ΔÞgððkMk þ 1þ νÞ=ΔÞ satisfies
the condition (I1).
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Before proving Theorem 11, we first introduce the
fermionic partial trace and the fermionic local oscillation
operator, which are essential for analyzing the fermionic
systems.
We introduce a shorthand notation j1ii ¼ c†i jvaci and

j0ii ¼ cic
†
i jvaci for all i. Then with some abuse of

notation, we require that cj; c
†
j “anticommutes” with

j1ii; h1ij for all i ≠ j, and “commutes” with j0ii; h0ij for
all i ≠ j. For instance, consider O ¼ c†1c

†
2c2c3, then

h12jOj12i ¼ ð−1Þ2c†1h12jc†2c2j12ic3 ¼ c†1c3: ðI3Þ

Here the factor ð−1Þ2 is due to the convention that h12j is
required to anticommute with c†1, and j12i is required to
anticommute with c3. This is analogous to operations in
spin systems, where commuting a state past spin operators
acting on different sites follows a similar rule. For example,
in a two-site system, we can rewrite X1X2j11i ¼ X1j11iX2,
treating the operators sequentially while preserving their
site-specific action.
More generally, for any observable O, the fermionic

partial trace on the ith lattice, denoted by Trfi , can be
defined as

Trfi ðOÞ ¼ h0ijOj0ii þ h1ijOj1ii: ðI4Þ

The tensor product with the identity matrix in (H4) now
takes the form

TiðOÞ ¼ c†i ci þ cic
†
i

2
Trfi ðOÞ; ðI5Þ

where we have used that c†i ci þ cic
†
i ¼ 1 is even in the

fermionic operators and commutes with all cj; c
†
j when

i ≠ j. The fermionic local oscillation operator is then
defined as

δfi ðOÞ ¼ O − TiðOÞ: ðI6Þ

Remark 12. To simplify the calculation and definiton of
the oscillator norm, we also introduce a more explicit
definition of the fermionic partial trace that does not depend
on the convention of commuting states past operators. This
definition is equivalent to that in Eq. (I5) for operators of
even parity.
For any observable O, we express it in fermionic form

with increasing order, meaning

O ¼
X
a;b

ga;bðc†1Þa1ðc1Þb1 � � � ðc†nÞanðcnÞbn ; ðI7Þ

where a;b∈ f0; 1gN and ci; c
†
i are creation and annihila-

tion operators on ith site.
We will only consider operators of even parity. Define

the fermionic partial trace as

Trfj ðOÞ ¼
XP

i
aiþbi mod 2¼0

aj¼bj¼1

ga;bðc†1Þa1ðc1Þb1 � � � ðc†jcj þ cjc
†
jÞ � � � ðc†nÞanðcnÞbn

þ 2
XP

i
aiþbi mod 2¼0

aj¼bj¼0

ga;bðc†1Þa1ðc1Þb1 � � � ðc†jcj þ cjc
†
jÞ � � � ðc†nÞanðcnÞbn : ðI8Þ

Here we note c†jcj þ cjc
†
j ¼ 1 ¼ ðc†jÞ0ðcjÞ0, and partial

trace does not change the parity of the operator.
Using the notational convention j1ji ¼ c†j jvaci, ckj1ji ¼

−j1jick, and c†kj1ji ¼ −j1jic†k, we may check that

Trfj ðOÞ¼
X
a;b

ga;bðc†1Þa1ðc1Þb1 � � �ðh0jjðc†jÞajðcjÞbj j0ji

þð−1Þ
P

i≠j
aiþbih1jjðc†jÞajðcjÞbj j1jiÞ � � �

× ðc†nÞanðcnÞbn : ðI9Þ

When O has even parity, ð−1Þ
P

i≠j
aiþbi ¼ 1 for all non-

vanishing terms. This proves the equivalence between the
partial trace defined in Eq. (I8) and (I5).

Following the fermionic notation convention and
Remark 12, we may generalize the definition of Pi, Qi
in (H6) and (H7) to fermionic systems. We first rewriteO as
O ¼ P

1
ai;bi¼0 ðc†i ÞaiðciÞbi ⊗F Oi

a;b, where ⊗F denotes the
fermionic tensor product, which follows the increasing
order convention as in (I7). Specifically, fOi

a;bg are defined
in the following:

c†i ci⊗F Oi
1;1¼c†i ciOc†i ci−c†i Oci;

ðc†i Þ0ðciÞ0⊗F Oi
0;0¼cic

†
i Ocic

†
i þc†i Oci;

ci⊗F Oi
0;1¼cic

†
i Oc†i ci; c†i ⊗F Oi

1;0¼c†i ciOcic
†
i :

ðI10Þ
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Then we have two projection operators that can be
expressed as follows:

PiðOÞ ¼
X
ai¼bi

ðc†i ÞaiðciÞbi ⊗F Oi
a;b; ðI11Þ

and

QiðOÞ ¼
X
ai≠bi

ðc†i ÞaiðciÞbi ⊗F Oi
a;b: ðI12Þ

Because of the fact the even parity of the density operator
ρ, which implies that TrðOρÞ ¼ 0 if O has odd parity, we
only consider even parity observables in our analysis. We
can define the fermionic oscillator norm as

kjOkj ≔
XN
i¼1

���δfi ∘PiðOÞ
���
∞
þ
���δfi ∘QiðOÞ

���
∞
: ðI13Þ

We note that several alternative expressions for the
fermionic partial trace exist in the literature (see, e.g.,
[104,105]). However, we emphasize that the fermionic
partial trace operation is uniquely defined once the ordering
of the sites is fixed and the fermionic states satisfy the
parity superselection rule (SSR), i.e., a fermionic state
should not involve a coherent superposition between states
with an even and an odd number of particles.
Next, we summarize the properties of the fermionic

partial trace (I5) [or (I8)] and the fermionic local oscillation
operator (I6) in the following.
(1) The fermionic partial trace operators fTig commute

with each other, meaning Ti ∘TjðOÞ ¼ Tj ∘TiðOÞ.
(2) The fermionic partial trace is contractive in operator

norm, meaning kTik∞→∞ ≤ 1.
(3) The fermionic local oscillation operator can control

the convergence of observables.
Lemma 13. For any observable O that takes the form of

(I7), we have

kO − I=2NTrðOÞk∞ ≤
XN
i

kδfi ðOÞk∞:

(4) The fermionic partial trace and local fermionic
oscillation operator commute with operators that
act on different sites:

Lemma 14. Given any superoperator F :

F ðOÞ ¼ p1p2 � � �plOq1q2 � � � qr; ðI14Þ

where pi; qi ∈ fci; c†i gi∈ I . If lþ r is an even number,
j ∉ I, and O has even parity, ½F ;Tj�ðOÞ ¼ 0 and

½F ; δfj �ðOÞ ¼ 0.
According to the above lemma, it is straightforward to

see that L†
i;ε commutes with δfj if the site j is not within the

fermionic support of L†
i;ε.

(5) The fermionic partial trace generates the local fixed
point for local Lindbladian operators:

Lemma 15. Assume L† can be written into the summa-
tions of (I14) such that every term satisfies the conditions of
Lemma 4. Given a subset J∈ f1;…; Ng and an observable
O that has even parity, if I ⊂ J, we have LðTJðOÞÞ ¼ 0,
where TJðOÞ ¼ Πi∈ JTiðOÞ.
In the following part of this section, we will first prove

Theorem 11 using the above properties. In Appendix I 1,
we first handle the noninteracting case using the new
fermionic oscillator norm. Then, in Appendix I 2, we
extend the proof to the perturbative regime. The proof of
above properties of the fermionic partial trace and the
fermionic local oscillation operator will be given in
Appendix I 3 for completeness.

1. Noninteracting case

In this section, we consider the noninteracting case with
ε ¼ 0 and H ¼ H0. We first calculate Ki:

(i) When Ai ¼ ci,

Ki ¼
Z

∞

−∞
fðtÞ expðiH0tÞci expð−iH0tÞdt

¼
X
q

cq

Z
∞

−∞
fðsÞðe−iMsÞiqds

¼
X
q

cqðf̂ð−MÞÞiq ¼ ci;

where we use f̂ð−MÞ as an identity according to the
conditions of f.

(ii) When Ai ¼ c†i ,

Ki ¼
Z

∞

−∞
fðtÞ expðiH0tÞc†i expð−iH0tÞdt

¼
X
q

c†q

Z
∞

−∞
fðsÞðe−iMsÞqids

¼
X
q

c†qðf̂ðMÞÞqi ¼ 0;

where we use f̂ðMÞ ¼ 0 according to the conditions
of f.

Thus, we have the Lindbladian dynamics:

dρ
dt

¼ L½ρ� ¼
X
i

ciρc
†
i −

1

2
fc†i ci; ρg|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≔L†
i ðρÞ

:

Now, we first prove Theorem 11 for the simplest
case ε ¼ 0.
Proof of Theorem 11 when ε ¼ 0. Let O ¼P
1
ai;bi¼0 ðc†i ÞaiðciÞbi ⊗F Oi

a;b, where ⊗F is the fermionic
tensor product that follows the increasing order as in
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the form of (I7). Here,

c†i ci ⊗F Oi
1;1 ¼ c†i ciOc†i ci−c†i Oci; c†i ⊗F Oi

1;0¼ c†i ciOcic
†
i ;

ci ⊗F Oi
0;1 ¼ cic

†
i Oc†i ci;ðc†i Þ0ðciÞ0⊗F Oi

0;0¼ cic
†
i Ocic

†
i þc†i Oci:

We notice

c†i Oci −
1

2
fc†i ci; Og ¼ −c†i ci ⊗F Oi

1;1 −
1

2
ci ⊗F Oi

0;1 −
1

2
c†i ⊗F Oi

1;0:

Here, we did not generate parity sign in the first term because O has even parity. This implies

δfi

�
c†i Oci −

1

2
fc†i ci; Og

�
¼ 1

2
ðcic†i − c†i ciÞ ⊗F Oi

1;1 −
1

2
ci ⊗F Oi

0;1 −
1

2
c†i ⊗F Oi

1;0:

At the same time, we notice

δfi ðOÞ ¼ 1

2
ðc†i ci − cic

†
i Þ ⊗F Oi

1;1 þ ci ⊗F Oi
0;1 þ c†i ⊗F Oi

1;0:

According to the commuting property in Lemma 14, let

O1;i ¼
X
ai¼bi

ðc†i ÞaiðciÞbi ⊗F Oi
a;b; O2;i ¼

X
ai≠bi

ðc†i ÞaiðciÞbi ⊗F Oi
a;b;

we have

dδfi ðO1;iÞ
dt

¼ −δfi ðO1;iÞ þ
X
j≠i

δfi ðL†
jðO1;iÞÞ ¼ −δfi ðO1;iÞ þ

X
j≠i

L†
jðδfi ðO1;iÞÞ ðI15Þ

and

dδfi ðO2;iÞ
dt

¼ −
1

2
δfi ðO2;iÞ þ

X
j≠i

δfi ðL†
jðO2;iÞÞ ¼ −

1

2
δfi ðO2;iÞ þ

X
j≠i

L†
jðδfi ðO2;iÞÞ: ðI16Þ

Similar to the case of spin systems, from (I15) and (I16), we obtain

kδfi ∘PiðOðtÞÞk∞ þ kδfi ∘QiðOðtÞÞk∞ ≤ exp ð−t=2Þðkδfi ∘PiðOð0ÞÞk∞ þ kδfi ∘QiðOð0ÞÞk∞Þ:

Thus, we have

jjjOjjj ≤ exp ð−t=2ÞjjjOð0Þjjj ≤ 4N exp ð−t=2Þ:

for any kOð0Þk ¼ 1. The remaining step is the same as the proof of Theorem 8 so we omit it. ▪

2. Proof of Theorem 11

The following part of the proof follows a similar strategy to that used in proving Theorem 2 in Appendix H. For
completeness, we still write down the initial steps in the following. It suffices to show the decay rate of the following
quantity that is similar to that in Proposition 9:

kjOðtÞkj ¼
XN
i¼1

���δfi ∘PiðOðtÞÞ
���
∞
þ
���δfi ∘QiðOðtÞÞ

���
∞
:
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Here Pi, Qi are defined in (I11) and (I12). We assume the observable Oð0Þ takes the form of (I7), we will bound each term
separately as follows.

(i) δfi ∘PiðOðtÞÞ: We notice

∂tδ
f
i ∘PiðOðtÞÞ ¼ δfi ∘PiðL†

i;εðOðtÞÞÞþδfi ∘Pi

�X
j≠i

L†
j;εðOðtÞÞ

�

¼ δfi ∘PiðL†
i;0ðOðtÞÞÞþδfi ∘PiðL†

i;εðOðtÞÞ−L†
i;0ðOðtÞÞÞ

þ
X
j≠i

L†
j;εðδfi ∘PiðOðtÞÞÞþ

�
δfi ∘Pi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ

¼−δfi ∘PiðOðtÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
decaying part

þ
X
j≠i

L†
j;εðδfi ∘PiðOðtÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contractive part

þδfi ∘PiðL†
i;εðOðtÞÞ−L†

i;0ðOðtÞÞÞþ
�
δfi ∘Pi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ;

where we use the calculation in the above section to derive the last equality.
(ii) δfi ∘QiðOðtÞÞ: We notice

∂tδ
f
i ∘QiðOðtÞÞ¼ δfi ∘QiðL†

i;εðOðtÞÞÞþδfi ∘Qi

�X
j≠i

L†
j;εðOðtÞÞ

�

¼ δfi ∘QiðL†
i;0ðOðtÞÞÞþδfi ∘QiðL†

i;εðOðtÞÞ−L†
i;0ðOðtÞÞÞ

þ
X
j≠i

L†
j;εðδfi ∘QiðOðtÞÞÞþ

�
δfi ∘Qi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ

¼−
1

2
δfi ∘QiðOðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
decaying part

þ
X
j≠i

L†
j;εðδfi ∘QiðOðtÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contractive part

þδfi ∘QiðL†
i;εðOðtÞÞ−L†

i;0ðOðtÞÞÞ

þ
�
δfi ∘Qi;

X
j≠i

L†
j;ε

	
ðOðtÞÞ:

Similar to (H14) and (H15), according to the above calculation, we obtain

kδfi ∘PiðOðtÞÞk∞ ≤ expð−tÞkδfi ∘PiðOð0ÞÞk∞
þ
Z

t

0

expðs − tÞ
����δfi ∘PiðL†

i;εðOðsÞÞ − L†
i;0ðOðsÞÞÞ þ

�
δfi ∘Pi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds; ðI17Þ

kδfi ∘QiðOðtÞÞk∞ ≤ expð−t=2Þkδfi ∘QiðOð0ÞÞk∞
þ
Z

t

0

expððs − tÞ=2Þ
����δfi ∘QiðL†

i;εðOðsÞÞ − L†
i;0ðOðsÞÞÞ þ

�
δfi ∘Qi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds: ðI18Þ

These inequalities imply

kδfi ðPiðOðtÞÞÞk þ kδfi ðQiðOðtÞÞÞk
≤ expð−t=2Þðkδfi ðPiðOð0ÞÞÞk þ kδfi ðQiðOð0ÞÞÞkÞ

þ
Z

t

0

expððs − tÞ=2Þ
����δfi ∘PiðL†

i;εðOðsÞÞ − L†
i;0ðOðsÞÞÞ þ

�
δfi ∘Pi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds

þ
Z

t

0

expððs − tÞ=2Þ
����δfi ∘QiðL†

i;εðOðsÞÞ − L†
i;0ðOðsÞÞÞ þ

�
δfi ∘Qi;

X
j≠iL

†
j;ε

	
ðOðsÞÞ

����
∞
ds; ðI19Þ
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which is the same as (H16). Following the idea of proving Proposition 9, the next step is to show the inequalities����
�
δfi ∘Pi;

X
j≠iL

†
j;ε

	
ðOÞ

����
∞
;

����
�
δfi ∘Qi;

X
j≠iL

†
j;ε

	
ðOÞ

����
∞
≤
X
c

κci ðkδfc ∘PcðOÞk∞ þ kδfc ∘QcðOÞk∞Þ ðI20Þ

and

kδfi ∘PiðL†
i;εðOÞ − L†

i;0ðOÞÞk∞; kδfi ∘QiðL†
i;εðOÞ − L†

i;0ðOÞÞk∞ ≤
X
c

γci ðkδfc ∘PcðOÞk∞ þ kδfc ∘QcðOÞk∞Þ ðI21Þ

with
P

i κ
c
i þ

P
i γ

c
i smaller than a constant that is independent of the system size. The value of κci and γci can be directly

calculated by the following lemma.
Lemma 16. Define J ¼ ðmaxi;j jMi;jjÞrD0 l. Under conditions of Theorem 11, for any r ≥ 1, we have

kLr†
i;ε − Lr−1†

i;ε k∞→∞ ≤ ξðrÞ ¼ O
�
kMk

�
1

2r
þ expð−C2;fðrΔ=ð4JeÞÞ1=α=2Þ

��
;

kL†
i;ε − L†

i;0k∞→∞ ≤ ηðεÞ ¼ OðkMkðεðJlogαð1=εÞ=Δþ 1ÞDlÞÞ: ðI22Þ

Proof.According to [41] (Lemma 3) and recall khjk ≤ 1, J represents the Lieb-Robinson velocity for a fermionic system.
The proof of this lemma follows the same argument as that of Lemma 10, and thus, we omit it. ▪
Finally, similar to the proof of Proposition 9, letting r� ¼ ΘðmaxfJ=Δ; D2; logðkMk−1ÞgÞ, we can show

κ ¼
X
i

κki þ
X
i

γki ≤ 4ð2r� þ 1Þ2DηðεÞ þ 20
X
m0≥r�

X
m≥m0

ð2mþ 1Þ2Dþ1ΓðmÞ;

where ΓðrÞ ¼ P
r≥r0 ξðrÞ ¼ OðkMk2−rÞ, when r ¼ ΩðJ=ΔÞ. Because r� ¼ ΘðmaxfJ=Δ; D2; logðkMk−1ÞgÞ, the second

term is smaller than 1=8. Finally, we set

ε ¼ Oðð2r� þ 1Þ−2DðJ logαð1=εÞ=Δþ 1Þ−Dl−1kMk−1Þ

to ensure κ < 1=4 and conclude the proof.

3. Proof of properties of fermionic partial trace and local oscillation operator

Proof of kTik∞→∞ ≤ 1. Here, we only consider even parity observables. Different from the definition of fOi
a;bg in

Eq. (I10), we rewrite it as

O ¼ c†i ci ⊗F Oi
1;1 þ c†i ⊗F Oi

1;0 þ ci ⊗F Oi
0;1 þ cic

†
i ⊗F Oi

−1;−1;

where

c†i ci ⊗F Oi
1;1 ¼ c†i ciOc†i ci;

cic
†
i ⊗F Oi−1;−1 ¼ cic

†
i Ocic

†
i ;

ci ⊗F Oi
0;1 ¼ cic

†
i Oc†i ci; c

†
i ⊗F Oi

1;0 ¼ c†i ciOcic
†
i .

Given any vector jψi ¼ j0iijϕ0;ii þ j1iijϕ1;ii, we have

hψ jOjψi ¼ hϕ1;ijh1ijc†i ci ⊗F Oi
1;1j1iijϕ1;ii þ hϕ0;ijh0ijcic†i ⊗F Oi

−1;−1j0iijϕ0;ii
þ hϕ1;ijh1ijc†i ⊗F Oi

1;0j0iijϕ0;ii þ hϕ0;ijh0ijci ⊗F Oi
0;1j1iijϕ1;ii:

This implies
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kOk∞ ≥ max



sup

kj1iijϕ1;iik2¼1

hϕ1;ijh1ijc†i ci ⊗F Oi
1;1j1iijϕ1;ii; sup

kj0iijϕ0;iik2¼1

hϕ0;ijh0ijcic†i ⊗F Oi
−1;−1j0iijϕ0;ii

�
¼ max fkc†i ci ⊗F Oi

1;1k∞; kcic†i ⊗F Oi
−1;−1k∞g:

We consider the first term

hϕ1;ijh1ijc†i ci ⊗F Oi
1;1j1iijϕ1;ii ¼ hϕ1;ijh1ijOi

1;1j1iijϕ1;ii:

Now, we try to get rid of j1ii in the above equality. We
rewrite Oi

1;1 ¼ Oodd;i
1;1 þOeven;i

1;1 , where Oodd;i
1;1 contains terms

satisfying
P

j>i aj þ bj mod 2 ¼ 1 and Oeven;i
1;1 contains

terms satisfying
P

j>i aj þ bj mod 2 ¼ 0. Then,

hϕ1;ijh1ijOi
1;1j1iijϕ1;ii

¼ −hϕ1;ijOodd;i
1;1 jϕ1;ii þ hϕ1;ijOeven;i

1;1 jϕ1;ii;

where we abuse the notation and let jϕ1;ii∈C2n−1 and
Oodd;i

1;1 ; Oeven;i
1;1 ∈C2n−1×2n−1 act on qubits 1; 2;…; i − 1;

iþ 1 � � � ; n. Next, we write

jϕ1;ii ¼
X

a∈ f0;1gN−1

caja1ija2i � � � jai−1ijaiþ1i � � � jani;

where a ¼ ða1; a2;…; ai−1; aiþ1;…; anÞ∈ f0; 1gN−1. We
then define

jϕodd;i
1;i i¼

XP
j>i

aj mod 2¼1

caja1ija2i � � � jai−1ijaiþ1i � � � jani;

jϕeven;i
1;i i¼

XP
j>i

aj mod 2¼0

caja1ija2i � � � jai−1ijaiþ1i � � � jani:

We have hϕeven;i
1;i jϕodd;i

1;i i ¼ 0 and

−hϕ1;ijOodd;i
1;1 jϕ1;iiþhϕ1;ijOeven;i

1;1 jϕ1;ii
¼−hϕodd;i

1;i jOodd;i
1;1 jϕeven;i

1;i i−hϕeven;i
1;i jOodd;i

1;1 jϕodd;i
1;i i

þhϕeven;i
1;i jOeven;i

1;1 jϕeven;i
1;i iþhϕodd;i

1;i jOeven;i
1;1 jϕodd;i

1;i i
¼hϕodd;i

1;i jOodd;i
1;1 j−ϕeven;i

1;i iþh−ϕeven;i
1;i jOodd;i

1;1 jϕodd;i
1;i i

þh−ϕeven;i
1;i jOeven;i

1;1 j−ϕeven;i
1;i iþhϕodd;i

1;i jOeven;i
1;1 jϕodd;i

1;i i
¼ðhϕodd;i

1;i j−hϕeven;i
1;i jÞðOodd;i

1;1 þOeven;i
1;1 Þðjϕodd;i

1;i i− jϕeven;i
1;i iÞ:

This implies

kc†i ci ⊗F Oi
1;1k∞ ¼ sup

kj1iijϕ1;iik2¼1

jhϕ1;ijh1ijOi
1;1j1iijϕ1;iij

¼ kOodd;i
1;1 þOeven;i

1;1 k∞ ¼ kOi
1;1k∞:

Similarly, we also have

kcic†i ⊗F Oi
−1;−1k∞ ¼ kOi

−1;−1k∞;
kOk∞ ≥ max fkOi

1;1k∞; kOi
−1;−1k∞g:

Finally, we notice

TiðOÞ ¼ 1

2
ðc†i ci þ cic

†
i Þ ⊗F ðOi

1;1 þOi
−1;−1Þ:

Similar to the above calculation, we have

kTiðOÞk∞ ¼
����Oi

1;1 þOi
−1;−1

2

����
∞

≤ max fkOi
1;1k∞; kOi

−1;−1k∞g ≤ kOk∞:

This concludes the proof. ▪
Proof of Lemma 13. We first notice

O¼ δf1ðOÞþT1ðOÞ¼ δf1ðOÞþδf2ðT1ðOÞÞþT2 ∘T1ðOÞ:

Applying the above equality iteratively, we have

O − Tn ∘… ∘…T1ðOÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
I=2NTrðOÞ

¼
Xn
i¼1

δfi ðTi−1 ∘… ∘…T1ðOÞÞ:

Next, using the fact that ½δfi ;Tj� ¼ 0 and kTik∞→∞ ≤ 1, we
have �����O − Tn ∘… ∘…T1ðOÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

I=2NTrðOÞ

����� ≤
Xn
i¼1

���δfi ðOÞ
���:

This concludes the proof. ▪
Proof of Lemma 14. Decompose O as (I7). It suffices to

prove ½F ;Tj� ¼ 0. There are three cases:
(i) aj ≠ bj: This case is trivial because TjðOÞ ¼

TjðF ðOÞÞ ¼ 0.
(ii) aj ¼ bj ¼ 0: This case is also trivial because

TjðOÞ ¼ O. and TjðF ðOÞÞ ¼ F ðOÞ.
(iii) aj ¼ bj ¼ 1: We note cjc

†
j generates the same parity

as c†jcj when they commute with c†i or ci when i ≠ j.
This implies TjF ðOÞ ¼ FTjðOÞ. ▪

Proof of Lemma 15.We only need to consider the case
when aj ¼ bj for j∈ J. In this case

TJðOÞ ¼ IJ
2jJj

⊗F Of1;2;…;NgnJ:
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Because O takes the form of (I7), if we expand TJðOÞ into
the form of (I7), we must have

P
i∉J ai þ bi as an even

number. Then, we have

L†ðTJðOÞÞ ¼ L†
�
IJ
2jJj

�
⊗F Of1;2;…;NgnJ ¼ 0:

This concludes the proof. ▪
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