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Quantum many-body systems provide a unique platform for exploring the rich interplay between chaos,
randomness, and complexity. In a recently proposed paradigm known as deep thermalization, random
quantum states of system A are generated by performing projective measurements on system B following
chaotic Hamiltonian evolution acting jointly on AB. In this scheme, the randomness of the projected state
ensemble arises from the intrinsic randomness of the outcomes when B is measured. Here, we propose a
modified scheme in which classical randomness injected during the protocol is converted by quantum
chaos into quantum randomness of the resulting state ensemble. We show that for generic chaotic systems
this conversion is optimal in that each bit of injected classical entropy generates as much additional
quantum randomness as adding an extra qubit to B. This significantly enhances the randomness of the
projected ensemble without imposing additional demands on the quantum hardware. Our scheme can be
easily implemented on typical analog quantum simulators, providing a more scalable route for generating
quantum randomness valuable for many applications. In particular, we demonstrate that the accuracy of a
shadow tomography protocol can be substantially improved.
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Introduction—Preparing ensembles of random quantum
states is an increasingly important task in quantum informa-
tion science. Quantum randomness is theoretically interesting
for its connections to quantum chaos [1–3] and quantum
descriptions of black hole dynamics [4–6], and is also
practically relevant for a wide range of applications such
as randomized benchmarking [7,8], quantum communication
[9], phase retrieval [10], shadow tomography [11,12],
cryptography [13,14], and large-scale device benchmarking
[15–18]. However, in general it is difficult to generate truly
random quantum states—known as Haar random states—
which have exponential complexity. Further, for these appli-
cations it is typically desirable to create random states on
many qubits, but this task is stymied by limitations on the
fidelity of near-term quantum processors.
In lieu of creating such truly random states, many

applications can already be accomplished through only
low-order approximations to the Haar random ensemble,
known as k-designs [8,19], which are statistically indis-
tinguishable from Haar random states for any observable
involving up to k copies of the state. Thus, it is useful to
characterize the randomness of a quantum state ensemble
by quantifying its distance from a k-design for k ≥ 2. It is
known that approximate k-designs can be generated effi-
ciently by random unitary circuits (RUCs) [20–23].

Effectively, such RUCs convert classical randomness (the
arrangement of the circuit) into quantum randomness (the
generated k-design), albeit while requiring a high degree of
spatiotemporal control and low noise.
Recently, a new paradigm has emerged for realizing

random states without requiring the high level of control
of RUCs, but instead relying on projective measurements
following a fixed chaotic Hamiltonian evolution [24,25] in
a process known as deep thermalization [24–38]. In this
approach, one evolves a many-qubit quantum system under
a chaotic Hamiltonian (with spectral statistics described by
random matrix theory), and then measures a subset of the
qubits (the bath). For a wide range of physical systems,
the resulting state ensemble of the unmeasured qubits (the
projected ensemble) approximates a k-design [24,25]. This
method for generating random states can be used for
practical applications such as benchmarking analog quan-
tum simulators [25]. Since the dynamics is fixed, unlike
RUCs, the randomness stems from the intrinsic uncertainty
of quantum measurements. While this approach yields
exact Haar random states in the limit of infinitely many
measured qubits, the convergence to successively higher
order k-designs is limited by the size of the projectively
measured bath, which poses a practical bottleneck for near-
term quantum hardware with limited qubit number.
Here, we propose and numerically implement new

strategies for circumventing this constraint via injection
of classical randomness into quantum chaotic dynamics.
This approach allows us to effectively generate higher order

*Present address: Department of Physics, Stanford Univer-
sity, Stanford, California, USA.

PHYSICAL REVIEW LETTERS 134, 180403 (2025)

0031-9007=25=134(18)=180403(7) 180403-1 © 2025 American Physical Society

https://orcid.org/0000-0002-1920-5407
https://orcid.org/0000-0003-2707-9962
https://orcid.org/0000-0002-8059-5950
https://orcid.org/0000-0002-4461-224X
https://orcid.org/0000-0002-2421-4762
https://ror.org/05dxps055
https://ror.org/001kv2y39
https://ror.org/04mv4n011
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.180403&domain=pdf&date_stamp=2025-05-06
https://doi.org/10.1103/PhysRevLett.134.180403
https://doi.org/10.1103/PhysRevLett.134.180403
https://doi.org/10.1103/PhysRevLett.134.180403
https://doi.org/10.1103/PhysRevLett.134.180403


k-designs for a fixed system size by supplying classical
entropy rather than additional bath qubits. We inject
classical entropy via either randomizing the initial basis
states prepared for the Hamiltonian evolution, or injecting
time-independent disorder into the evolution itself. This
approach allows us to sample random quantum states with
significantly fewer quantum resources than would be
required using RUCs or the previously proposed version
of deep thermalization. In fact, we find that each bit of
classical entropy can produce as much additional quantum
randomness as adding an extra qubit to the bath, signifying
an optimal conversion of classical to quantum randomness.
The injected classical randomness can effectively double
the size of the bath; hence using the same number of
physical qubits we can generate state ensembles that are far
closer to the Haar ensemble compared to the projected
ensemble protocol proposed in [24].
Our procedures are experimentally simple to execute on

modern quantum platforms, including most analog quan-
tum simulators, and can thus enable the creation of more
complex random states on near-term quantum devices.
Our approach can improve many applications of quantum
randomness [7–18]; we describe one in particular by
demonstrating how injecting classical randomness can
enhance the performance of shadow tomography [11,12].
Projected ensembles and deep thermalization—In the

basic framework of the projected ensemble [24,25,39,40], a
fixed initial state of N qubits, taken to be j0i⊗N , is evolved

under a fixed unitary evolution UAB. The system is
bipartitioned into two subsystems, delineated as A and
B, of size NA and NB qubits, respectively. Qubits in B are
then measured in the computational basis producing a
bitstring z∈ f0; 1gNB with probability pðzÞ, which induces
a pure quantum state in A conditioned on the measurement
outcome. The set of these postmeasurement states, together
with the probabilities pðzÞ, collectively encode the entire
state and is known as the projected ensemble.
Our scheme exploits this basic framework, but improves

the convergence of the projected ensemble to k-designs
via the injection of classical randomness. In the simplest
case [see Fig. 1(a)], this is accomplished by preparing not a
fixed initial state for the evolution, but a randomized one.
Concretely, the initial state is randomly sampled from
the ensemble Einit ¼ fjxi; qðxÞgx∈ f0;1gN of computational
basis states with probability qðxÞ, and then evolved
under the same fixed UAB. The bath is then projectively
measured, now yielding bitstrings z labeled by the choice
of initial state with probabilities pxðzÞ ¼ qðxÞkðIA ⊗ hzjBÞ
UABjxik2. Accordingly, the postmeasurement states in A
are labeled by both the bitstring measured in B as well as
the initial state, jψxðzÞi ∝ ðIA ⊗ hzjBÞUABjxi. The set of
these probabilities and (normalized) postmeasurement
states then forms the classically enhanced projected
ensemble E ¼ fqðxÞpxðzÞ; jψxðzÞig.
In order to assess the degree of randomness of the

projected ensemble E, we compare its moments against that

(a) (b)

(c)

FIG. 1. Classically enhanced projected ensembles via random basis state initialization. (a) The system is initialized in a random
computational basis state ⊗N

i¼1 jxii, where the N-bit string x ¼ ðx1;…; xNÞ∈ f0; 1gN is drawn randomly from a distribution qðxÞ with
entropy Sc. The initial state evolves under a fixed unitary U, and NB bath qubits are measured in the computational basis to yield a
random outcome z. For generic chaotic dynamics, the projected states jψxðzÞi on the remaining NA qubits form a projected ensemble E
that approximates a k-design. (b) Classical randomness of entropy Sc increases the size of the projected ensemble E by a factor of up to
2Sc , illustrated on the Bloch sphere. (c) Normalized Hilbert-Schmidt distance ΔðkÞ between the kth moment of the projected ensemble E
and the Haar ensemble, against the entropy density Sc=N of the classical distribution qðxÞ, with NA ¼ 4 and NB ¼ 6. The points
are obtained numerically by evolving the initial state with the chaotic mixed-field 1D Ising Hamiltonian H0 (4) for a time JT ¼ 103.

The dashed lines denote the analytical root-mean-square distance ΔðkÞ
rms (3) when U is a Haar random unitary.
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of the Haar ensemble (see Supplemental Material (SM)
[41] for more details). The kth moment operator of the
ensemble E is given by

ρðkÞ ¼
X

x∈ f0;1gN
z∈ f0;1gNB

qðxÞpxðzÞðjψxðzÞihψxðzÞjÞ⊗k: ð1Þ

We then compute the normalized Hilbert-Schmidt distance
to the kth moment of the Haar ensemble on A,

ΔðkÞ ¼

���ρðkÞ − ρðkÞHaar

���
2���ρðkÞHaar

���
2

; ð2Þ

where k · k2 is the Hilbert-Schmidt norm. This has an
intuitive entropic interpretation since ΔðkÞ decreases when
the quantum Rényi 2-entropy of ρðkÞ increases. E forms an
ϵ-approximate state k-design if ΔðkÞ ≤ ϵ, which is consis-
tent with the usual definition using the trace distance [41].
The classical randomness of the initial states Einit on the
full system AB can be quantified by Sc, the Rényi 2-entropy
of qðxÞ. The original protocol in [24,25] corresponds
to Sc ¼ 0.
Optimal conversion from classical to quantum

randomness—While it is obvious that injecting classical
randomness via Einit can only increase the quantum
randomness of the projected ensemble [Fig. 1(b)], the
interesting question is to what extent quantum randomness
can be increased. For analytical tractability, we study the
case where UAB is a fixed unitary drawn from the Haar
measure on the unitary group Uð2NAþNBÞ. The quantum
randomness in the “typical” case is measured by the root-

mean-square distance ΔðkÞ
rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EU∼HaarðΔðkÞÞ2

q
, obtained

by averaging ðΔðkÞÞ2 (which is a function of UAB) over the
Haar measure. Note that the trace distance between ρðkÞ and
ρðkÞHaar can be upper bounded by OðΔðkÞ

rmsÞ, which we find is
exponentially smaller in both NA and k compared to the
bound of Ref. [24] (see Theorem 2 in SM [41]). Our main
analytical result is stated as follows.
Theorem 1 (Classically enhanced projected ensembles):

Let Einit ¼ fqðxÞ; jxig be an set of orthonormal initial
states jxi with probability distribution qðxÞ and Sc ¼
− log2 ð

P
x qðxÞ2Þ is the Rényi 2-entropy of qðxÞ. For

any 2 ≤ k < 2ðNAþNBÞ=4, the root-mean-square distance

ΔðkÞ
rms between the kth moments of the projected ensemble

E and the Haar ensemble approaches

ðΔðkÞ
rmsÞ2 ¼ 1

k!2ScþNB−kNA
ð3Þ

as NA and NB → ∞.
The detailed proof of Theorem 1 using Weingarten

calculus is provided in SM [41]. From Eq. (3), we can

see that quantum randomness is maximized when Einit
forms a 1-design, i.e., Sc ¼ NA þ NB corresponding to the
maximum amount of classical entropy in the initial state
distribution. The expression for k ¼ 1 is trivial and derived
in SM [41]. This reveals explicitly the conversion of

classical to quantum randomness. Moreover, since ΔðkÞ
rms

vanishes exponentially with NB þ Sc, Theorem 1 implies
an (asymptotically) optimal conversion from classical to
quantum randomness, where injecting Sc bits of classical

entropy yields the same ΔðkÞ
rms as adding Sc bath qubits

without classical randomness. In other words, classical
randomness and bath qubits are interconvertible resources
from the perspective of projected ensembles.
This is particularly advantageous for experimental

implementation since NB is often limited on the
quantum hardware due to noise and practical constraints.
Additionally, up to NB bits of classical entropy can be
obtained naturally by reusing the bath measurement out-
come z as an initial state of B in a subsequent run of the
protocol. Equation (3) indicates that injecting classical
randomness can reduce the distance between the projected
ensemble and the Haar ensemble by a factor exponential
in N ¼ NA þ NB at a very modest cost for the quantum
hardware. Thus injecting classical randomness significantly
reduces the quantum resources needed to sample random
quantum states on analog simulators.
Since Sc is at most NA þ NB bits, this gives an effective

bath size of up to NA þ 2NB qubits, essentially increasing
the bath size by more than a factor of 2. This allows one
to generate higher-order designs with a maximal achievable
k almost twice as large [41] as in the original protocol
[24,25]. For example, 2-designs can be generated on Awith
NB < NA. In contrast, not even a 1-design can be achieved
for NB < NA if no classical randomness is injected.
We now show numerically that Theorem 1 holds even for

Hamiltonian dynamics. We plot ΔðkÞ against the classical
entropy density Sc=N in Fig. 1(c) for UAB ¼ expð−iH0TÞ
with quench time JT ¼ 103, where H0 is the mixed-field
1D Ising Hamiltonian

H0 ¼
XNAþNB

i¼1

ðhxXi þ hyYi þ JXiXiþ1Þ ð4Þ

with open boundary conditions. Xi, Yi, and Zi are Pauli
operators for qubit i. The computational basis states are
eigenstates of Zi, and thus satisfy hH0i ¼ 0, which is
necessary for deep thermalization at infinite temperature.
We choose fhx; hy; Jg ¼ f0.8090; 0.9045; 1g in the non-
integrable and chaotic regime [56,57], which was also
numerically demonstrated to produce random projected
ensembles [24] for Sc ¼ 0. We observe that ΔðkÞ decreases
exponentially with the classical entropy Sc, in excellent
agreement with our analytical formula (3) derived for Haar
random dynamics. This suggests that the near-optimal
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conversion from classical to quantum randomness is a more
generic feature of quantum chaos.
Classical to quantum randomness using Hamiltonian

disorder—Another way to inject classical randomness is by
fixing the initial state and applying a disorder Hamiltonian
Hdðξ⃗Þ with 2Sc independent disorder realizations ξ⃗, on top
of a fixed chaotic Hamiltonian H0 [58]; see Fig. 2(a). Such
a setup is motivated both by experimental considerations
of analog quantum simulators that may more readily apply
time-constant disordered potentials rather than localized
bit-flip operations, and also for its theoretical connections
to many-body localization, as we shall explore below.
As an example, we consider the Hamiltonian

H ¼ H0 þHdðξ⃗Þ ¼ H0 þ
XNAþNB

i¼1

ξiXi; ð5Þ

where H0 is given by Eq. (4) and disorder

ξi ∼
i:i:d:Uniform½−W;W� with disorder strength W=J (i.i.d.,

independent identically distributed). Figure 2(b) shows the
behavior of Δð2Þ against disorder strength W=J (similar
behavior is observed for other k > 2), with 2NAþNB disorder

realizations. The analytical values of ΔðkÞ
rms in Eq. (3) for

Sc ¼ 0 and Sc ¼ N are indicated by dashed lines as a
benchmark. At very weak disorder strengths W=J → 0,
ΔðkÞ converges for large JT near the benchmark value
with Sc ¼ 0, consistent with previous results [24]. As the
disorder strength increases, classical randomness gets
converted into quantum randomness, causing ΔðkÞ to
decrease. At sufficiently long evolution times, ΔðkÞ can
become close to the benchmark value with Sc ¼ N. This
signifies a near-optimal conversion from classical to

quantum randomness. Our analytical formula (3) works
well here even though classical randomness is injected via
the dynamics instead of the initial state, which demon-
strates the generality of our protocol.
At strong disorder strengths W=J ≫ 1, ΔðkÞ increases

and saturates. We attribute this behavior to the fact that
for strong disorder, the projected ensemble behaves like
an ensemble of random product states (at best a low-
randomness 1-design), due to many-body localization
effects that become relevant when W=J ≳ 1. We note
that a more experimentally accessible scheme of adding
a random global detuning Hd¼ ξ

P
iXi, where ξ∼

Uniform½−W;W� (instead of spatially inhomogeneous dis-
order), also yields qualitatively similar results (not shown).
The crossover between the benchmark values at Sc ¼ 0

and Sc ¼ N as disorder strength increases can be roughly
estimated via a simple argument. Firstly, we need a quench
time JT ≳ NA to get volume-law entanglement between
the system and bath qubits. To contribute appreciably to
the randomness of the projected ensemble, the effects
of disorder must be integrated over a time T such that
WT ≳ 1. On the other hand, for efficient conversion
of classical to quantum randomness, we must avoid the
many-body localized regime W=J ≳ 1 [41]. Therefore,
for JT ≫ NA we expect nearly maximal conversion of
classical to quantum randomness for 1=JT ≲W=J ≲ 1.
The behavior of Δð2Þ shown in Fig. 2(b) is consistent with
this expectation. An interesting future direction would be
to characterize the many-body localization transition via
the projected ensemble.
Application: Classical shadow tomography—A practical

application of our protocol is classical shadow tomography

(a) (b)

FIG. 2. (a) Classically enhanced projected ensembles via random Hamiltonian disorder. The initial state is fixed as j0i⊗N . A spatially
inhomogeneous random field Hdðξ⃗Þ with fluctuations of size W is applied on N qubits on top of a fixed chaotic Hamiltonian H0 with
interaction energy J, and the state is evolved for a quench time T. (b) Normalized Hilbert-Schmidt distance Δð2Þ between the projected
ensemble E and the Haar ensemble, against the disorder strength W=J. The points are obtained numerically by evolving the initial state
under the chaotic (mixed-field) Ising model with disorder (5), for NA ¼ 3 and NB ¼ 8. A total of 2NAþNB disorder realizations are

sampled, giving a projected ensemble of size jEj ¼ 2NAþ2NB . Numerical results are compared against analytical benchmarks (3) of ΔðkÞ
rms

for Haar random unitary evolution with Sc ¼ 0 and N, denoted by the dotted and dashed lines respectively. The gray shaded region
marks the many-body localized (MBL) regime, with the ergodic-MBL crossover point at W=J ≈ 0.42 [41]. For very large disorder
W=J ≫ 1, the projected ensemble converges to a 1-design, and Δð2Þ saturates and becomes independent of NB.
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[11] for learning expectation values of observables in
unknown states. The state is scrambled with a unitary,
followed by measurements in the computational basis.
From the outcomes and the inverted scrambling dynamics,
one can construct a classical representation of the unknown
state, which can be used to accurately estimate the expect-
ation values of many observables. In Refs. [12,59], it was
proposed to use projected ensembles to generate the
scrambling dynamics for shadow tomography. However,
the estimation accuracy crucially depends on the quantum
randomness of the projected ensemble [12]. Now we show
that one can gain an exponential increase in accuracy by
adding classical randomness, without incurring extra cost
on the quantum computer.
The initial state is ρA ⊗ jxihxjB, where ρA is the

unknown state to be learned. Classical randomness is
injected by randomly initializing the B subsystem in
computational basis states jxi, similar to the setup in
Fig. 1(a), up to a maximum of Sc ¼ 2NB bits. A unitary
U is then applied on the full system. The projected
ensemble E is constructed by measuring subsystem B
in the computational basis fzBg. The states in E are then
measured in the computational basis fzAg. The measure-
ment outcomes ðzA;zBÞ occur with probability pxðzA;zBÞ¼
hzA;zBjUðρA⊗ jxihxjÞU†jzA;zBi. In the classical postpro-
cessing, we construct the shadow estimator as

ρ̂A;x ¼
ð2NA þ 1ÞhxjU†jzA; zBihzA; zBjUjxi
TrAðhxjU†jzA; zBihzA; zBjUjxiÞ − IA; ð6Þ

which satisfies the normalization Trðρ̂A;xÞ ¼ 1 (see SM
[41] for a detailed explanation of the protocol). Intuitively,
ρ̂A;x is constructed to “undo” the scrambling of ρA, in order
to estimate ρA. This gives the estimator Ô ¼ TrðOρ̂A;xÞ ≈
TrðOρAÞ for the observable O, averaged over L measure-
ment shots. The shadow estimator can be analogously
defined if classical randomness is instead injected by
adding random disorder such as in Eq. (5) to the dynamics
for a fixed initial state. The estimation error is δO ¼
jÔ − TrðOρAÞj, with the bias (i.e., systematic) error given
by δO as L → ∞. ρ̂A is an unbiased estimator of ρA if the
projected ensemble forms an exact 2-design [12]. For
approximate 2-designs, the estimation incurs a bias error
that grows with the distance Δð2Þ from a 2-design. Thus,
from Theorem 1, we expect the bias error to be exponen-
tially reduced by increasing Sc.
This is demonstrated in Fig. 3(a), which shows the

average bias error against the classical entropy Sc injected
into the projected ensemble, with randomly chosen
Pauli operators O. We numerically simulate two different
settings of classical randomness: (i) bath qubits randomly
initialized from the uniform distribution over Sc classical
bits, with U being a fixed Haar random unitary; (ii) bath
qubits fixed in the j0i⊗NB state and evolved under the

disordered Hamiltonian (5) sampled from a set of 2Sc

randomly chosen disorder realizations [12].

Similar to our analytical prediction for ΔðkÞ
rms in Theorem

1, we observe that the bias error decreases exponentially as
∼2−ðNBþScÞ=2 in both settings of classical randomness.
Injecting Sc bits of entropy yields nearly the same reduc-
tion in bias error as having additional Sc bath qubits without
classical randomness, arising from the near-optimal con-
version from classical to quantum randomness. In Fig. 3(b),
we plot δO against NB, with classical randomness in the
setting (i). We find that for a finite L, the error converges at
large NB to that expected of an unbiased shadow estimator
(black dashed line) [11]. Increasing Sc causes the error to
decrease significantly. Our protocol remains computation-
ally efficient and scalable at large NA, using the “patched
quench” setup [59]; see SM [41] for details.
Discussion—We have shown how quantum chaos can

convert classical randomness into quantum randomness
by injecting classical entropy into the deep thermalization
framework. For generic chaotic dynamics, each bit of
classical entropy generates nearly as much quantum ran-
domness as an additional bath qubit. From a practical
viewpoint, injecting classical entropy allows one to
improve the generation of approximate k-designs, with
the maximum achievable k almost doubled, at only a small
additional cost to the quantum hardware. This enhancement
in quantum randomness directly translates to better per-
formance for applications that utilize random quantum
dynamics as a resource, as we have demonstrated through
the example of shadow tomography. Our scheme is easier

(a) (b)

FIG. 3. (a) Average bias error δO (with L → ∞ measurement
shots) against classical entropy Sc plus number of bath qubits NB.
For “Generic,” we randomize the initial state of the NB bath
qubits and evolve with a fixed Haar random unitary. For
“Ising,” we evolve with (5) for JT ¼ 100, where the initial
state is fixed and the disorder of the Hamiltonian is randomized
for 2Sc realizations with W=J ¼ 0.5. Dashed line depicts
δO ∝ 2−ðScþNBÞ=2. Error is nearly independent of whether ran-
domness originates from measuring bath qubits, adding random
initialization, or disorder in the time evolution. (b) Error δO
against NB for different L and Sc. Black dashed line shows the
error for L ¼ 5000 of an unbiased classical shadow protocol [11].
In both plots, we have NA ¼ 1 and average over 100 randomly
chosen instances of unitaries to suppress statistical fluctuations
(see SM [41] for details).
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to implement experimentally on many analog quantum
simulators, as compared to well-established schemes using
RUCs, by leveraging the inherent complexity of many-
body quantum dynamics. From a theoretical perspective,
our work raises interesting questions about whether inject-
ing classical randomness improves the convergence of
other related protocols such as finite-temperature projected
ensembles and temporal ensembles to their respective
maximum entropy ensembles [35], about the crossover
between ergodic and localized behavior, and about the
universal features of quantum chaos.
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